

PIANO STRUTTURALE COMUNALE

SISTEMA AMBIENTALE E NATURALE

RELAZIONE DI MICROZONAZIONE SISMICA

ALL. A Studi di microzonazione sismica di III livello

stesura: novembre 2019

STUDIO DI MICROZONAZIONE SISMICA DI III LIVELLO

Approvato con delibera di C.C. nº 70 del 21/11/2019

Committente: Associazione Comunità Papa Giovanni XXIII

Comune: **Rimini**

STUDIO DI MICROZONAZIONE SISMICA DI III ° LIVELLO E ANALISI DI RISPOSTA SISMICA LOCALE PER LA REALIZZAZIONE DI UN SITO DI CULTO IN LOCALITÀ COVIGNANO, IN COMUNE DI RIMINI (RN).

Rimini, Gennaio 2019 Rif. 06-2018

Dott. Geol. ALESSANDRO MERLI

Viale San Salvador, 48 - 47922 Rimini (RN) - Tel/Fax 0541/381967 – cell. +393391361620 E-MAIL: <u>merli.alessandro@libero.it</u> - PEC: merli.alessandro@epap.sicurezzapostale.it _____

INDICE

1	PREMESSA	2
2	INQUADRAMENTO GENERALE	2
2.1	CONSIDERAZIONI GENERALI	2
3	PROVE GEOFISICHE IN SITO	5
3.1	INDAGINE DI SISMICA ATTIVA	5
3.2	INDAGINI DI SISMICA PASSIVA	6
4	RISULTATI PROVE GEOFISICHE	10
5	SISMICITA' DELL'AREA E FENOMENI COSISMICI	12
6	ANALISI DI RISPOSTA SISMICA LOCALE	19
6.1	GENERALITA'	19
6.2	MODELLO E CARATTERIZZAZIONE DINAMICA DEL SOTTOSUOLO	19
6.3	III LIVELLO DI APPROFONDIMENTO – DGR 2193/2015 R.E.R	23
6.4	ANALISI DI RSL ALLO SLV – DM 17/01/2018	30
7	CONCLUSIONI GENERALI RSL	39

<u>ALLEGATI</u>

ALLEGATO N. 1 - INQUADRAMENTO GEOGRAFICO ALLEGATO N. 2 - SCHEMA PLANIMETRICO INDAGINE GEOGNOSTICA-GEOFISICA ALLEGATO N. 3 – INDAGINI GEOFISICHE ALLEGATO N. 4 – PARAMETRI DI SCUOTIMENTO – SEGNALI INPUT / OUTPUT - MZS ALLEGATO N. 5 – PARAMETRI DI SCUOTIMENTO – SEGNALI INPUT / OUTPUT – DM2018 ALLEGATO N. 6 – DATI SPETTRO ELASTICO MEDIO RSL - MZS ALLEGATO N. 7 – DATI SPETTRO ELASTICO MEDIO RSL – DM2018

rif. 06/2018 / gennaio 2019 \Rightarrow

1. PREMESSA

Su incarico dell'Associazione Comunità Papa Giovanni XXIII è stato predisposto il presente studio per lo studio di microzonazione sismica di III Livello di Approfondimento e di Risposta Sismica Locale su di un'area per la realizzazione di un sito di culto in località Covignano, in Comune di Rimini (RN).

L'area di studio è compresa nell'Elemento 152 (S. Martino Monte l'Abate) del Foglio 256 (RIMINI) della Carta Tecnica Regione Emilia Romagna (allegato n. 1).

Detta relazione, coerentemente alle norme di PSC, viene realizzata sia a fini di pianificazione urbanistica che di progettazione esecutiva di opere, in ottemperanza sia alle procedure definite nella delibera dell'Assemblea legislativa progr. N° 112 – oggetto n° 3121 del 2 maggio 2007 – "Indirizzi per gli studi di microzonazione sismica in Emilia-Romagna per la pianificazione territoriale e urbanistica", come aggiornata con DGR 2193/2015 che ai paragrafi 3.2.2-3.2.3. ("*Valutazione dell'Azione Sismica*") e 7.11.3.1 ("*Risposta sismica locale*") delle Norme tecniche per le costruzioni D.M. 17 gennaio 2018 (G.U. del 20.02.2018 suppl. ord. n° 42).

Tale studio si avvale anche dei dati geologici, geognostici e geofisici elaborati ed acquisiti in occasione dello Studio Geologico redatto dal Dott. Geol. Matteo Gurnari in data novembre 2018 ed a cui si farà riferimento per le valutazioni di tipo geologico stratigrafico.

L'indagine è stata articolata nelle seguenti fasi:

- ricostruzione del modello geologico e geofisico generale del sito attraverso utilizzo di dati geognostici, rilevamento in sito e materiale bibliografico;
- definizione del modello geologico, idrogeologico e tettonico generale rappresentativo con riferimento alla Relazione Geologica redatta dal Dott. Geol. Matteo Gurnari in data novembre 2018;
- utilizzo della campagna geognostica a supporto della medesima Relazione Geologica;
- realizzazione di una specifica campagna di indagini geofisiche per la definizione del modello di comportamento dinamico dei terreni tramite:
 - N. 1 prova Masw con Array a 24 canali;
 - N. 1 prova Re.Mi. con array a 24 canali;
 - N. 1 prova a stazione singola tipo HVSR;
- definizione del modello geofisico di riferimento
- valutazioni circa la pericolosità sismica di base
- Selezione segnali sismici di input
- Analisi di Risposta Sismica Locale e azioni sismiche di output;

La presente relazione potrà costituire un utile riferimento per il progettista nell'inquadrare i problemi e di conseguenza permettere una modellazione a supporto delle scelte progettuali che dovrà essere affrontata nella sede opportuna quale la relazione geotecnica.

2 INQUADRAMENTO GENERALE

2.1 CONSIDERAZIONI GENERALI

Per la caratterizzazione geologica e geomeccanica del sito si fa riferimento alla campagna geognostica eseguita in sito per la Relazione Geologica (Dott. Gurnari, 2018) ed in particolare in:

- materiale bibliografico (dati geologici e geognostici a cura del Servizio geologico e sismico dei suoli della Regione Emilia Romagna).
- utilizzo di n. 3 prove penetrometriche statiche C.P.T. per la valutazione delle caratteristiche geolitologiche e geomeccaniche dei terreni superficiali.
- N. 2 prove dilatometriche con dilatometro piatto Marchetti per valutare le caratteristiche ed i profili superficiali di deformabilità/rigidezza dei terreni e poter calibrare al meglio l'utilizzo/selezione delle curve di degrado.

Il modello geologico di riferimento e l'assetto stratigrafico generale considerati pertanto sono quelli già definiti attraverso le stratigrafie geolitologiche schematiche illustrate nella Relazione Geologica del Dott. Matteo Gurnari (novembre 2018), realizzate con l'ausilio sia delle nuove prove in sito, le quali permettono di visualizzare l'andamento degli orizzonti nel sottosuolo distinti in base alle caratteristiche litologico – meccaniche e ne chiariscono nel contempo i rapporti stratigrafici, per cui sintetizzando i litotipi superficiali presenti sono:

LIT.	Descrizione	Profondità (da p.c.)
v	Livello superficiale Limi argillosi di origine eluvio – colluviale, depositi antropici e/o appartenenti alla coltre formazionale fortemente alterata, in sup. terreno vegetale ed orizzonti pedogenizzati; talora con indurimenti per essicazione; caratteristiche geotecniche scarse e variabili.	Da 0 A 1.0
Α	Coltre formazionale alterata Coltre formazionale alterata costituita da Limi con argilla alternati a livelli più sabbiosi, con tracce di stratificazione; modeste-caratteristiche geotecniche e compressibilità a forte variabilità. Locali orizzonti pseudocementati Talora molto fratturata e decompressa	Da 1.0 a 4.0-5.0
SD	Substrato decompresso Substrato formazionale in posto decompresso ed a modesta alterazione. Limi con argilla alternati a livelli più sabbiosi, con tracce di stratificazione; generalmente compatti ed a modesta compressibilità. Resistenza crescente con la profondità.	Da 4.0-5.0 a 6.6-11.4
SU	Substrato pliocenico Formazione pliocenica inalterata in posto; limi con argilla alternati a livelli sabbiosi; duri ed a ridotta compressibilità. Resistenza crescente con la profondità	Da 6.6-11.4 a termine prove

L'assetto del substrato formazionale inalterato in posto viene schematizzato nella relazione geologica del dott. Gurnari secondo la seguente sezione litotecnica esplicativa, in cui il substrato alterato comprende i succitati Litotipi (A ed SD) ed il "Substrato compatto" corrisponde ad SU:

Traccia di sezione (A-B) lungo la quale è stata ricostruita la stratigrafia del terreno

Ricostruzione stratigrafica della porzione di versante interessata dall'eventuale messa in posto del modesto manufatto (sezione A-B)

I terreni del substrato geologico (A, SD ed SU) risultano appartenere alla Formazione delle Argille Azzurre FAA, con assetto a reggipoggio/traversopoggio, come rilevato dal Servizio Geologico Regionale nell'ambito della carta geologica regionale alla scala 1:10000, come di seguito riportata:

L'indagine geognostica, unitamente al raffronto con i sondaggi prossimi all'area in studio ed alle sezioni geologiche profonde sviluppate in prossimità del sito dalla Regione Emilia Romagna, ha così consentito di definire il quadro stratigrafico dell'area in esame.

<u>3 PROVE GEOFISICHE IN SITO</u>

3.1 Generalità

Al fine di caratterizzare il sottosuolo più approfonditamente ai fini dello studio di RSL, con l'individuazione dei profili di VS ed i contrasti di impedenza sismica che condizionano il modo di vibrare del terreno, sono state utilizzate le seguenti prove geofisiche in sito:

- N. 1 prova in array passivo monodimensionale con elaborazione Re.Mi. (dicembre 2018);
- N. 1 prova in array attivo monodimensionale con elaborazione MASW (dicembre 2015);
- N. 1 prova a stazione singola tipo HVSR (novembre 2015);

Per una miglior calibrazione delle indagini si sono attuate delle tecniche di elaborazione congiunta, abbinando prove ad alta risoluzione superficiale (MASW) con prove a maggior capacità di penetrazione (Re.Mi.- HVSR), individuando al contempo i modi di vibrazione del sottosuolo, strettamente associati alle caratteristiche stratigrafiche e di rigidezza dei sismostrati.

Le tecnologie geofisiche utilizzate hanno consentito di valutare l'omogeneità strutturale/geofisica delle aree, il posizionamento del bed-rock sismico nonché le frequenze di risonanza del sito.

L'ubicazione delle prove utilizzate è illustrata in allegato n. 2, mentre i relativi report vengono riportati in allegato n. 3

3.2 Indagini di simica attiva

3.2.1 Prova sismica attiva in array superficiale MASW

Cenni teorici

Per la conoscenza dell'andamento nel primo sottosuolo della velocità di propagazione delle onde di taglio Negli ultimi anni hanno avuto ampio sviluppo tecniche geofisiche basate sull'analisi della propagazione delle onde superficiali ed, in particolare, delle onde di Rayleigh. Le proprietà dispersive di tali onde in mezzi stratificati, nonché la stretta relazione esistente tra la loro velocità di propagazione e quella delle onde di taglio, consentono di risalire al profilo di velocità delle onde S.

Il metodo di indagine attivo MASW (Multichannel Analysis of Surface Waves) è basato su un artificiale energizzazione sismica del suolo e sull' analisi spettrale delle onde superficiali presenti nel segnale (Nazarian e Stokoe, 1984; Park et al., 1999).

La curva di dispersione delle onde di Rayleigh rappresenta la variazione di velocità di fase che tali onde hanno al variare della frequenza. Tali valori di velocità sono intimamente legati alle proprietà meccaniche del mezzo in cui l'onda si propaga (velocità delle onde S, delle onde P e densità). Tuttavia, diversi studi hanno in realtà messo in evidenza che la velocità delle onde P e la densità sono parametri di second'ordine rispetto alle onde S nel determinare la velocità di fase delle onde di Rayleigh. Quindi, dato che le onde superficiali campionano una porzione di sottosuolo che cresce in funzione del periodo dell'onda e che la loro velocità di fase è fortemente condizionata in massima parte dalle velocità delle onde S dello strato campionato, la forma di questa curva è essenzialmente condizionata dalla struttura del sottosuolo ed in particolare dalle variazioni con al profondità delle velocità delle onde S.

Pertanto, utilizzando appositi formalismi (inversione) è possibile stabilire una relazione (analiticamente complessa ma diretta) fra la forma della curva di dispersione e la velocità delle onde

S nel sottosuolo. Tale relazione consente il calcolo di curve di dispersione teoriche a partire da modelli del sottosuolo a strati piano-paralleli.

L'operazione d'inversione, quindi, consiste nella minimizzazione, attraverso una procedura iterativa, degli scarti tra i valori di velocità di fase sperimentali della curve di dispersione e quelli teorici relativi ad una serie di modelli di prova "velocità delle onde S – profondità".

MODALITA' OPERATIVA

Si sono disposti 23 geofoni da 4,5 hz a distanza di 2.0 metri, con un offset dalla sorgente di energizzazione = 5.0 mt ottenendo così una traccia ricevente lunga circa 49 metri. Eseguendo poi varie battute di energizzazione tramite massa battente (mazza) alla distanza fissa di offset si sono ottenute più tracce, energizzando da entrambe le estremità, per meglio analizzare le onde superficiali e le eventuali anisotropie stratigrafiche.

L'ubicazione dello stendimento viene illustrato in allegato n. 2 mentre in allegato 3 vengono riportati i dati sperimentali elaborati.

3.3 Indagini di simica passiva

3.3.1 Prova a stazione singola HVSR

Questa tecnica si basa essenzialmente sul rapporto spettrale H/V di rumore ambientale (seismic noise) e permette di valutare gli effetti locali di sito.

Si assume che i microtremori (il cosiddetto rumore di fondo registrabile in qualunque momento posizionando un sensore sismico sul terreno) consistano principalmente di un tipo di onde superficiali, le onde di Rayleigh, che si propagano in un singolo strato soffice su semispazio e che la presenza di questo strato sia la causa dell'amplificazione al sito.

Per l'applicazione e l'interpretazione di questa tecnica è fondamentale una buona conoscenza dell'ingegneria sismologica combinata con un background di informazioni relative alle caratteristiche geologiche, geofisiche e geotecniche del sito.

Questa tecnologia è stata oggetto del progetto di ricerca SESAME (Site EffectS assessment using AMbient Excitations) ed a questo che si rimanda per le linee guida della tecnica H/V spectral ratio (http://sesame-fp5.obs.ujf-grenoble.fr/index.htm).

La sismica passiva a stazione singola fornisce quindi importanti informazioni sui terreni di indagine relativamente alle frequenze naturali e di risonanza.

Nel caso specifico si è ritenuto adeguato l'utilizzo di tale metodologia in quanto è possibile anche un'adeguata taratura "stratigrafica" e "geofisica" tramite le prove geognostiche in sito ed un elaborazione congiunta con altre tecniche investigative del sottosuolo (MASW, Re.Mi.) al fine di ottenere una stima del profilo di VS sino elevate profondità con la maggior attendibilità e coerenza sperimentale possibile. La misura di microtremore ambientale è stata effettuata per mezzo di un registratore sismico Tromino, con freq. propria 4.5 Hz, prodotto dalla ditta Micromed spa.

Il registratore è composto da una terna di velocimetri, i quali trasmettono il segnale ad un sistema di acquisizione digitale a basso rumore. Lo strumento, una volta posizionato correttamente (tramite bolla sferica e piedini regolabili) sul terreno, inizia l'acquisizione dei microtremori: i modi di vibrare del terreno vengono amplificati, convertiti in forma digitale, organizzati e salvati su una memoria digitale. Successivamente i dati vengono trasferiti nel PC dove, in base alle necessità di analisi vengono elaborati ed archiviati con i seguenti codici di calcolo Grilla 7.4, WinMasw e Geopsypack 2.4.2, (vedi allegato n. 3).

L'ubicazione delle acquisizioni viene illustrato in allegato n. 2.

Basi teoriche

Le basi teoriche dell'HVSR (Horizontal to Vertical Spectral Ratio) in un sistema stratificato in cui i parametri variano solo con la profondità (1-D) è abbastanza semplice.

Si consideri un sistema in cui gli strati 1 e 2 si distinguono per le diverse densità (ρ 1 e ρ 2) e le diverse velocità delle onde sismiche (V1 e V2).

Un'onda che viaggia nel mezzo 1 viene parzialmente riflessa dall'orizzonte che separa i due strati, e questa una volta riflessa interferisce con quelle incidenti, sommandosi e raggiungendo le ampiezze massime (condizione di risonanza) quando la lunghezza dell'onda incidente (λ) è 4 volte (o suoi multipli dispari) lo spessore h del primo strato.

In altre parole la frequenza fondamentale di risonanza (fr) dello strato 1 relativa alle onde P è: fr = Vp1/(4h)

mentre quella relativa alle onde S è:

fr = Vs1/(4h)

Teoricamente questo effetto è sommabile cosicché la curva HVSR mostra come massimi relativi le frequenze di risonanza dei vari strati e, insieme ad una stima della velocità media, è in grado di fornire previsioni sullo spessore h degli strati.

Tale informazione è per lo più contenuta nella componente verticale del moto, ma la prassi di usare il rapporto degli spettri orizzontali e quello verticale, piuttosto che il solo spettro verticale, deriva dal fatto che il rapporto fornisce un'importante normalizzazione del segnale per a) il contenuto in frequenza, b) la risposta strumentale e c) l'ampiezza del segnale quando le registrazioni vengono effettuate in momenti con rumore di fondo più o meno alto.

Si rileva inoltre come i microtremori siano solo in parte costituiti da onde di volume, P o S, e in misura molto maggiore da onde superficiali, in particolare da onde di Rayleigh (Lachet e Bard, 1994).

Tuttavia ci si può ricondurre a risonanza delle onde di volume poiché le onde di superficie sono prodotte da interferenza costruttiva di queste ultime e poiché la velocità dell'onda di Rayleigh è molto prossima a quella delle onde S. L'applicabilità pratica della semplice formula sopra riportata relativa alle onde S è stata già dimostrata in molti studi sia nell'ambito della prospezione geofisica sia nell'ambito ingegneristico.

Elaborazione dati

L'elaborazione dei dati raccolti impiega un software (Grilla 7.4 – WinMAsw - Geopsypack 2.4.2) in grado di consentire la determinazione delle frequenze di risonanza del sottosuolo mediante la tecnica dei rapporti spettrali secondo le linee guida del progetto europeo SESAME (Site EffectS assessment using Ambient Excitations, 2005).

Le risultanze dell'elaborazione sono presentate mediante graficazione dei rapporti spettrali H/V e delle SINGLE COMPONENT SPECTRA, ovvero l'andamento delle singole componenti nelle tre direzioni (N-S_E-O_Verticale) secondo la procedura descritta in Castellaro et altri (2005), consentendo di definire il massimo del rapporto HVSR nel valore di f0 – Frequenza/e di risonanza e la sua deviazione standard.

Inoltre è possibile invertire le curve HVSR creando una serie di modelli sintetici da confrontare con quello sperimentale fino a considerare ottimale il modello teorico più prossimo alle curve sperimentali, basato sulla propagazione delle onde di Rayleigh nel modo fondamentale e superiori in

sistemi multistrato.

Onde verificare la qualità della registrazione e, quindi, la corretta utilizzazione del dato acquisito ed elaborato, sono state valutate le caratteristiche di persistenza e direzionalità del segnale, necessarie a garantire il carattere stocastico della grandezza da misurare e, quindi, l'affidabilità del risultato.

3.3.2 Prova in array monodimensionale Refraction Microtremor (Re.Mi.)

Questo metodo venne introdotto da Louie (2001), e prevede una disposizione lineare dei geofoni verticali, del tipo comunemente usato per la sismica a rifrazione a piccola profondità (frequenza propria 8-10 Hz), allo specifico scopo di avere una profondità d' indagine dell'ordine di almeno 30 m, tipica degli studi per la valutazione degli effetti di sito legati alla distribuzione della VS (e quindi del modulo di rigidità µ o "G") fino a tale profondità.

Com'e ormai chiaro, profondità d'indagine superiori, possono essere raggiunte solo utilizzando frequenze proprie inferiori. L'acronimo Re.Mi. sta infatti per Refraction Microtremors. Il dispositivo di misura è sostanzialmente uguale a quello MASW e obbedisce agli stessi parametri di acquisizione, sia in termini di banda di frequenze analizzate che di spaziatura dei geofoni, per cui la spaziatura geofonica rappresenta una sorta di filtro in frequenza per il segnale che arriva da tutte le direzioni e maggiore è la spaziatura intergeofonica, minore è la frequenza del segnale utile campionabile (minor risoluzione), aumentando di conseguenza la profondità di investigazione.

Inoltre se la linea in esame non varia orizzontalmente più del 5% della sua direzione e se non cambia la sua elevazione più del 5% della lunghezza totale della linea si può utilizzare una procedura standard semplificata mentre al contrario vanno impostati i parametri geometrici e di quota esatti.

L' elaborazione dei dati pur dovendo passare per una trasformazione di Fourier (T.F.) avviene in forma sostanzialmente diversa dalla tecnica MASW, in quanto in questo caso gli arrivi delle onde di Rayleigh non sono in sequenza crescente con la distanza dalla sorgente, ma casuali. La modifica sostanziale riguarda un' operazione preliminare alla T.F., che viene effettuata sui dati di campagna e chiamata slant-stack (ovvero "sovrapposizione obliqua")

Nel sismogramma acquisito sul campo, che giace nel piano x-t, si mandano tante rette di equazione: $t = \tau 0$ - p0x, dove p0 ha le dimensioni del reciproco della velocita (lentezza o "slowness") e $\tau 0$ e l'ordinata all'origine o "tempo intercetto", variando $\tau 0$ da 0 al tempo massimo di registrazione e p da 0 (velocita apparente d'arrivo del fronte infinita) a un valore pmax, reciproco del valore di VR minima attesa (poche decine di m/s in presenza di terreni sciolti). Lungo ciascuna di queste rette si sommano tutte le ampiezze di segnale incontrate sulle varie tracce e il risultato diventa un punto di coordinate (p0, $\tau 0$) nel piano p- τ .

La trasformata di Fourier viene eseguita per ogni p, lungo l'asse T. Si ottiene lo spettro di Fourier nel piano frequenza-velocita di fase (reciproca di p), a cui segue l'inversione 1D della curva di fase del modo fondamentale e/o superiori, esattamente come nel metodo MASW.

Un limite concettuale di questo metodo e costituito dal fatto che soltanto le velocita di onde che si propagano nella direzione del profilo vengono restituite con precisione. mentre tutte le altre direzioni portano a velocita sovrastimate. Louie stesso si rese conto di questo limite e fece una valutazione statistica dell'errore, concludendo che si otteneva un ragionevole modello delle Vs invertendo non la linea di massimo spettrale nel grafico f-p, ma il suo bordo inferiore (v. picking della figura colorata).

Attraverso le procedure di in inversione, variando il numero di strati, la loro velocità e la densità del materiale, la curva di dispersione calcolata viene adattata fino a farla aderire il più possibile a quella sperimentale ottenuta con il picking.

In sostanza, si tratta di una modellazione diretta, monodimensionale, che può accettare inversioni di velocità con la profondità nella quale è molto importante l'abilità e l'esperienza di interpretazione del geofisico.

L'elaborazione mediante tecnica Refraction Microtremor (Re.Mi.) è comunque in grado, specialmente se ben supportata da un'adeguata e corretta interpretazione dei dati, di differenziare con dettaglio (anche mediante inversione dei parametri con la profondità) le variazioni nel grado di consistenza (= variazioni dei parametri cinematici delle onde di taglio) del terreno; inoltre, con tale tecnica innovativa, si sopperisce alla possibile e diffusa presenza di fonti di rumore ambientale nel sito in esame che altrimenti potrebbero inficiare, come per altre tecniche sismiche, la ricerca stessa dei risultati.

In particolare l'inversione della curva di dispersione è stata effettuata in maniera congiunta ai rapporti spettrali H/V realizzati nel medesimo sito ed al profilo SCPTU (per gli orizzonti più superficiali) in modo da avere un maggiore controllo sul fitting e quindi un dato sperimentale più efficiente. Per la prova si sono utilizzati 24 geofoni da 4,5 hz ad interdistanza di 5.0 metri, ottenendo così una traccia lunga 120 metri. La registrazione dei microtremori è stata condotta per 20 minuti tramite sismografo Pasi.

I dati ottenuti sono stati quindi analizzati con codice di calcolo Winmasw ed elaborati come illustrato in allegato n. 3.

L'ubicazione dello stendimento viene illustrato in allegato n. 2.

4 RISULTATI PROVE GEOFISICHE

In allegato n. 3 sono riportati rispettivamente i risultati delle prove sismiche MASW, ReMi, HVSR, eseguite come sopra descritto, unitamente alle frequenze di risonanza caratteristiche dei terreni in sito ed al grafico delle Vs.

L'indagine sismica basata sulla misura del microtremore, nel massimo valore H/V del rapporto spettrale, individua le frequenze caratteristiche del sottosuolo nel sito di intervento.

Per fenomeno di "risonanza" si intende la coincidenza tra le frequenze dominanti del segnale sismico in ingresso e quelle naturali del sottosuolo. Con il termine "doppia risonanza" si intende la corrispondenza tra le frequenze fondamentali del segnale sismico così come trasmesso in superficie e quelle caratteristiche dei manufatti ivi edificati (da Risposta Sismica Locale di Lanzo e Silvestri, Hevelyus Edizioni).

Sarà compito del progettista geotecnico/strutturale verificare la frequenza fondamentale delle strutture in progetto e confrontarla con la frequenza fondamentale o le frequenze caratteristiche del sottosuolo onde evitare pericolosi fenomeni di doppia risonanza in caso di sisma.

La lettura degli spettri HVSR si basa sull'analisi dei picchi di frequenza ritenuti significativi di seguito individuati attraverso il confronto dei vari spettri medi e del rapporto fra le componenti orizzontali e verticali:

L'area risulta presentare caratteristiche abbastanza omogenee, soprattutto nei suoi tratti di media ed elevata profondità consentendo di stimare i seguenti picchi caratteristici e relativi range di variazione (i valori riportati possono essere suscettibili di una variabilità pari a ± 25%):

FREQUENZE (f)	RAPPORTI H/V
2.0 <f<2.4< th=""><th>1.7<hv<2.0< th=""></hv<2.0<></th></f<2.4<>	1.7 <hv<2.0< th=""></hv<2.0<>
4.0 <f<4.5< th=""><th>1.2<hv<1.4< th=""></hv<1.4<></th></f<4.5<>	1.2 <hv<1.4< th=""></hv<1.4<>
9.0 <f<9.5< th=""><th>2.1<hv<2.3< th=""></hv<2.3<></th></f<9.5<>	2.1 <hv<2.3< th=""></hv<2.3<>
13.0 <f<15.0< th=""><th>2.2<hv<2.5< th=""></hv<2.5<></th></f<15.0<>	2.2 <hv<2.5< th=""></hv<2.5<>

in cui frequenze più basse rappresentano le interfacce più profonde ove la più bassa è detta fondamentale (f0).

A 6.5 Hz e 20/22 Hz vengono riscontrati disturbi persistenti nel segnale riconducibili a picchi artificiali di probabile origine antropica.

In ogni caso, per una interpretazione generale, si devono considerare affidabili solo i valori di frequenza corrispondenti ai vari picchi H/V in quanto, in termini di ampiezza, tali i picchi possono risultare spesso smorzati o sovrasmorzati (in presenza di significative inversioni di velocità) sino a renderne difficile l'individuazione (meglio apprezzabile dall'andamento dei profili delle componenti orizzontali e verticali).

In base ai profili sperimentali di velocità elaborati con tecnica MASW/REMI le interfacce geofisiche più superficiali, coerentemente ai picchi H/V a media-alta frequenza, vengono individuate circa in corrispondenza dei passaggi stratigrafici fra i litotipi a diverso stato di alterazione (Lit. A, SD ed SU), mentre quello più profondo, assimilabile alla frequenza fondamentale f0, può essere attribuito all'interfaccia con il bedrock sismico locale, risultando particolarmente significativa per effettuare analisi di risposta sismica locale nonché per i campi di interesse ingegneristico.

Di seguito si riporta il profilo di Vs desumibile dai dati sperimentali diretti acquisiti (MASW/REMI) ed elaborati tramite procedure di inversione congiunta:

Vs [m/s]

Quindi, più in profondità, il profilo di velocità è stato stimato sfruttando l'inversione dei dati desumibili da indagine HVSR sino all'interfaccia definita dalla frequenza fondamentale di sito che, alla profondità di circa 100 m dal p.c., consente di individuare il bedrock sismico locale.

Il bedrock geofisico contraddistingue l'assunzione di un significativo grado di omogeneità e rigidezza sismica per un considerevole tratto in profondità, al di sotto del quale è ragionevole attendersi assenza di fenomeni amplificativi nel segnale sismico.

5 SISMICITA' DELL'AREA E FENOMENI COSISMICI

5.1 Eventi sismici attesi

Facendo riferimento alle osservazioni macrosismiche di terremoti al di sopra della soglia del 5° grado di danno censiti nel Catalogo Parametrico dei terremoti Italiani, di seguito si riepiloga in breve la storia sismica della provincia di Rimini, ricavata mediante consultazione del database dell'INGV "DBMI2015" di cui di seguito si riporta uno stralcio:

Seismic	history of	Rimini					PARTE 1				
PlaceID		IT_41984									
Coordinates	(lat, lon)	44.059, 12.56	8								
Municipality		Rimini									
Province		Rimini									
Region		Emilia-Romag	na								
No. of	reported	earthquakes	78								
Intensity	Year Mo Da Ho Mi Se	Epicentral area	NMDP	lo	Mw	Intensity	Year Mo Da Ho Mi Se	Epicentral area	NMDP	lo	Mw
7-8	1308 01 25 17 15	Rimini	1	7-8	5.33	8	1916 08 16 07 06 14.00	Riminese	257	8	5.82
5	1468 06 06 10 30	Romagna	3	4	3.7	2	1916 11 16 06 35	Alto Reatino	40	8	5.5
7	1472	Rimini	1	7	5.1	3	1917 04 26 09 35 59.00	Alta Valtiberina	134	9-10	5.99
5-6	1473 02 02	Rimini	1	5-6	4.4	3-4	1917 12 02 17 39	Appennino forlivese	32	6-7	5.09
6	1483 08 11 19 40	Romagna	14	8	5.69	5	1918 11 10 15 12 28.00	Appennino forlivese	187	9	5.96
F	1511 03 26 15 30	Friuli-Slovenia	120	9	6.32	4	1920 09 07 05 55 40.00	Garfagnana	750	10	6.53
4-5	1584 09 10 20 30	Appennino forlivese	17	9	5.97	4	1924 01 02 08 55 13.00	Senigallia	76	7-8	5.48
5-6	1591 07 10	Romagna	6	6-7	5.13	2	1926 01 01 18 04 03.00	Carniola interna	63	7-8	5.72
6	1625 12 05	Rimini	1	6	4.63	3	1928 05 30 20 01	Senigallia	17	5	5.02
5	1661 03 22 12 50	Appennino forlivese	79	9	6.05	3	1929 04 10 05 44	Bolognese	87	6	5.05
8	1672 04 14 15 45	Riminese	92	8	5.59	4-5	1930 10 30 07 13	Senigallia	268	8	5.83
5	1688 04 11 12 20	Romagna	39	8-9	5.84	4	1934 11 30 02 58 23.00	Adriatico settentrionale	51	5	5.3
F	1695 02 25 05 30	Asolano	107	10	6.4	4	1936 10 18 03 10	Alpago Cansiglio	269	9	6.06
F	1703 01 14 18	Valnerina	197	11	6.92	3	1937 11 26 21 58 30.00	Costa pesarese	7	5	4.16
5	1703 02 02 11 05	Aquilano	69	10	6.67	3	1943 10 03 08 28 29.00	Ascolano	170	8	5.67
4-5	1741 04 24 09 20	Fabrianese	135	9	6.17	3	1953 12 14 07 11 06.00	Appennino forlivese	48	5-6	4.7
4-5	1743 02 20	lonio settentrionale	84	9	6.68	2	1961 05 08 22 45 51.00	Forlivese	40	5	4.37
4	1768 10 19 23	Appennino forlivese	45	9	5.99	3	1962 01 23 17 31	Costa pesarese	49	5	4.35
3	1780 05 25	Romagna	5	5-6	4.4	NF	1962 08 30 06 27 07.00	Montefeltro	23	6-7	4.76
5	1781 04 04 21 20	Faentino	96	9-10	6.12	4-5	1967 12 30 04 19	Emilia Romagna orientale	40	6	5.05
8	1786 12 25 01	Riminese	90	8	5.66	F	1972 11 30 11 25 27.45	Costa pesarese	30		4.52
4	1861 10 16	Romagna	10	6-7	5.13	4	1978 12 05 15 39 04.00	Romagna	34	4-5	4.61
3	1870 10 30 18 34	Forlivese	41	8	5.61	3	1980 11 23 18 34 52.00	Irpinia-Basilicata	1394	10	6.81
4-5	1873 03 12 20 04	Appennino marchigiano	196	8	5.85	2	1983 11 09 16 29 52.00	Parmense	850	6-7	5.04
3-4	1873 06 29 03 58	Alpago Cansiglio	197	9-10	6.29	3-4	1984 04 29 05 02 59.00	Umbria settentrionale	709	7	5.62
NF	1874 10 07	Imolese	60	7	4.96	NF	1986 12 06 17 07 19.77	Ferrarese	604	6	4.43
.							DADTE 7				

Seismic	history of	Rimini				-	PARIE 2				
Intensity	Year Mo Da Ho Mi Se	Epicentral area	NMDP	lo	Mw	Intensity	Year Mo Da Ho Mi Se	Epicentral area	NMDP	lo	Mw
8	1875 03 17 23 51	Costa romagnola	144	8	5.74	NF	1993 11 07 23 21 11.72	Cesenate	36	4-5	3.95
3	1878 03 12 21 36	Bolognese	31	6	4.84	3-4	1996 10 15 09 55 59.95	Pianura emiliana	135	7	5.38
3	1881 09 28	Cesena	24	6-7	4.71	4	1997 09 26 00 33 12.88	Appennino -marchigiano	760	7-8	5.66
3	1904 11 17 05 02	Pistoiese	204	7	5.1	5	1997 09 26 09 40 26.60	Appennino -marchigiano	869	8-9	5.97
5	1909 01 13 00 45	Emilia Romagna orientale	867	6-7	5.36	4	1997 10 14 15 23 10.64	Valnerina	786		5.62
NF	1909 08 25 00 22	Crete Senesi	259	7-8	5.34	3-4	1998 04 05 15 52 21.01	Appennino-marchigiano	395		4.78
4	1911 02 19 07 18 30.00	Forlivese	181	7	5.26	2	1999 01 25 22 45 58.08	Appennino forlivese	97	5	4.36
6	1911 03 26 13 51	Riminese	9	5	5.04	2-3	2000 05 08 12 29 56.20	Faentino	126	5	4.67
NF	1913 11 25 20 55	Appennino parmense	73	4-5	4.65	2-3	2000 05 10 16 52 11.60	Faentino	151	5-6	4.82
4	1914 10 27 09 22	Lucchesia	660	7	5.63	4	2000 08 01 02 34 31.00	Montefeltro	84	5-6	4.27
4-5	1915 01 13 06 52 43.00	Marsica	1041	11	7.08	2	2001 11 26 00 56 55.46	Casentino	211	5-6	4.63
8	1916 05 17 12 50	Riminese	132	8	5.82	5	2003 12 07 10 20 33.04	Forlivese	165	5	4.18
6	1916 06 16 01 27	Riminese	17	6	4.82	NF	2006 10 21 07 04 10.01	Anconetano	287	5	4.21

Estratto della tabella esplicativa riportante i parametri che costituiscono il formato sintetico del database:

Field Description N Record number (in chronological order) Year Origin time: year Mo Origin time: month Da Origin time: day Ho Origin time: hour Mi Origin time: minutes Se Origin time: seconds EpicentralArea Epicentral area or area of the largest macrsoseismic effects Mw moment magnitude MdpN Number of macroseismic data Imax Maximum intensity Io Epicentral intensity

Distribuzione temporale degli eventi sismici considerati

Terremoto del 17 marzo 1875Terremoto del 17 maggio – 16 agosto 1916Carte delle isosisme in cui le aree colorate dal rosso al verde corrispondono a parti di territorio colpite da effetti
di severità decrescente. (DISS3/INGV).

Sulla scorta di tali cataloghi nonché di più approfondite informazioni storico-scientifiche e di studi su modelli geodinamici e crostali l'INGV ha sviluppato un database delle sorgenti sismogenetiche attive denominato DISS3, contenente potenziali fonti per i terremoti più grandi di 5,5 M in Italia e nelle aree circostanti:

Stralcio cartografico con distribuzione regionale degli eventi e delle sorgenti sismogenetiche - INGV_DISS 3

L'area d'intervento, risulta direttamente interessata dalla sorgente sismo genetica composita ITCS039 (denominata "Riminese On-Shore", Basili, R., U. Fracassi and S. Mariano 2006), molto prossima alla ITCS030, posizionata nello specchio marino frontestante, così come censite e caratterizzate nel database INGV_DISS 3.2, di cui di seguito si riporta uno stralcio georeferenziato ed ingrandito, unitamente agli stralci di due sezioni sismiche profonde rispettivamente rappresentative delle sorgenti ITCS039 e ITCS030, caratterizzanti l'attività sismica dell'area:

Sorgente sismogenetica ITC039 - Riminese "on-shore" proiettata su Sezione Amedea-M.te.Amiata di Bally et al. [1986]. Basili, R., U. Fracassi and S. Mariano 2006

Sorgente sismogenetica ITC030 - Riminese "off-shore" proiettata su Sezione Amedea-M.te.Amiata di Bally et al. [1986]. Basili, R., U. Fracassi and S. Mariano 2006

Di conseguenza diviene necessario definire un valore di magnitudo di riferimento "Mwmax" (magnitudo momento), analogamente ai valori di accelerazione massima, in funzione della possibilità che si possano verificare, sia pure con probabilità molto basse, eventi con magnitudo pari o superiore a quelli verificatisi nel periodo di osservazione del Catalogo dei Terremoti.

Per la definizione della massima magnitudo associabile a tali sorgenti sismogenetiche, sulla base dei dati macrosismici e strumentali, è opportuno rapportarsi all'aggiornamento del catalogo DBMI-CPTI15 in cui oltre ai valori di riferimento per ciascun evento vengono stimati anche i relativi ambiti di incertezza.

Diversamente il metodo di "**disaggregazione**" condotto da INGV (Spallarossa e Barani; 2007) fornisce risultati ottenuti attraverso l'opera di disaggregazione della pericolosità sismica (Bazzurro e Cornell; 1999) ovvero un'operazione che consente di valutare i contributi di diverse sorgenti sismiche alla pericolosità di un sito. Tale metodo si pone come obiettivo quello di consentire in qualunque sito la stima di una coppia di riferimento magnitudo – distanza (nel seguito M-R) e pertanto riporta una mappatura del territorio nazionale con valori di magnitudo che possono essere utilizzati per verificare le condizioni di stabilità di versante o di liquefazione per opere alle quali è associato un periodo di riferimento (RP) non superiore a quello per il quale la mappa è stata dedotta (vedi "Indicazioni e Criteri per la Microzonazione Sismica", 2008 a cura del Dipartimento per la Protezione civile).

Dai dati dell'analisi di disaggregazione il valore di magnitudo momento adottabile nel calcolo, al pari di quello della accelerazione, per opere ordinarie (progetti di basso-medio rischio e Vn=50 anni) con tempi max di ritorno di 475 anni e percentuale di superamento pari al 10%, potrebbe essere **Mw = 5.5** come definibile dalle Fig. 2.8.1 pag. 113 e 2.8.3 pag. 115 delle ICMS (metodo eventualmente utilizzabile solo per TR \leq 475 anni come da indicazioni ICMS).

Tuttavia l'area in studio è inserita all'interno della **zona sismogenetica n. 917** (Rimini - Ancona; vedi figura successiva) nell'ambito della zonazione "ZS9" definita dal "Gruppo di Lavoro per la redazione della Mappa della Pericolosità Sismica" dell'INGV. Nel rapporto conclusivo al paragrafo 6.3 (a pag. 36) sono stati individuati due tipi di valori (Rapporto Conclusivo GdL INGV, 2004).

A tal proposito in "Indicazioni e Criteri per la Microzonazione Sismica" (anno 2008 a cura del Dipartimento per la Protezione civile) si raccomanda l'adozione del valore di **Mwmax2 = 6.14**, come richiamato al paragrafo 2.8.2, definito come metodo semplice e in favore della sicurezza per stimare il valore della magnitudo che può essere utilizzata **per le verifiche di stabilità e di liquefazione dei terreni e/o progettazione di opere**. Rimane in ogni caso in ambito discrezionale del progettista l'adozione del valore più opportuno di magnitudo ai fini delle verifiche di calcolo in funzione della tipologia di opera e delle relative classe d'uso, tempi di ritorno, vita nominale e grado di rischio.

Si può osservare inoltre che ben pochi dei terremoti significativi verificatisi nella storia sismica del riminese e lungo la costa del Comune di Rimini hanno delle magnitudo inferiori a 5/5.5 e grado di intensità MCS<7-8.

Pertanto, considerati gli studi dell'INGV, la zonazione ZS9 e le indicazioni I.C.M.S., in relazione alle finalità e tipologie di opere e di intervento previste nell'areale di studio nonché alle relative condizioni di rischio prevedibili, per le analisi di calcolo si ritiene di proporre una **magnitudo momento max pari a MW=6.14**, derivabile dalle raccomandazioni I.C.M.S. e zonazione ZS9.

5.2 Pericolosita' sismica – faglie capaci

Per completare il quadro di pericolosità sismica dell'area ci si avvale del database ITHACA "ITHACA" dell'ISPRA, creato per la raccolta e la facile consultazione di tutte le informazioni disponibili riguardo le strutture tettoniche attive in Italia, con particolare attenzione ai processi tettonici che potrebbero generare rischi naturali. Il progetto si occupa in modo particolare delle faglie capaci, definite come faglie attive che potenzialmente possono creare deformazione in superficie. Il database delle faglie capaci (vedi figura successiva) è uno strumento fondamentale sia per analisi di pericolosità ambientale / sismica che per la pianificazione territoriale.

Il database evidenzia come le aree in studio non possano interferire con strutture tettoniche proprie di faglie capaci censite e certe/ben conosciute. La struttura censita più vicina (a oltre 4 Km di distanza) risulta essere la "Rimini – Ravenna", appartenente alle strutture sepolte del sottosuolo padano e al contempo ne riporta le caratteristiche nella scheda seguente:

MENU GENERALE	ITHACA - Catalogo d	delle faglie capaci
Chiudi finestra	ITHACA è un database cre- strutture tettoniche attive naturali. Il progetto si occu creare deformazione in su pericolosità ambientale e s e d) gestione delle emerge dell'analisi dei processi geo	ato per la raccolta e la facile consultazione di tutte le informazioni disponibili riguardo le in Italia, con particolare attenzione ai processi tettonici che potrebbero generare rischi ipa in modo particolare delle faglie capaci, definite come faglie che potenzialmente possono iperficie. Il database delle faglie capaci è uno strumento fondamentale per: a) analisi di ismica, b) comprensione dell'evoluzione recente del paesaggio, c) pianificazione territoriale inze di Protezione Civile. Può essere inoltre di supporto alla ricerca scientifica nell'ambito odinamici.
	PHISICAL AND GEOLOGICA	AL ATTRIBUTES
	GEOLOGIC SETTING	
	SYNOPSIS	Thrust appartenente alle strutture sepolte del sottosuolo padano. Nella parte meridionale della Pianura Padana si possono riconoscere tre archi principali chiamati, da ovest verso est: Arco del Monferrato; Arco Emiliano; Arco Romagnolo Ferrarese. Questi archi rappresentano, a grande scala, il limite esterno dell'Arco Appenninico settentrionale. L'Arco Emiliano è in parte sovrascorso sulla terminazione dei thrust subalpini e, nella parte orientale al di sopra dell'Arco Romagnolo Ferrarese. E' possibile suddividere la struttura dell'Arco Romagnolo Ferrarese in tre gruppi relativamente minori: le pieghe ferraresi, le pieghe romagnole e, più a est, le pieghe adriatiche. La presenza di questi archi denota inoltre diversi valori di raccorciamento che tendono mediamente ad aumentare da ovest verso est. Dal punto di vista sismico l'area è caratterizzata da un basso livello di sismicità di fondo con una maggior concentrazione di eventi lungo la catena appenninica e lungo i fronti dei sovrascorrimenti della Pianura Padana.
	FAULT NAME	Rimini - Ravenna
	FAULT CODE	93798
	MACROZONE	3
	REGION NAME	Emilia Romagna
	SYSTEM NAME	Ravenna - Comacchio System

GEOMETRY	1			
SEGMENTATION	no			
DEPTH (Km)	0			
LOCATION RELIABILITY (MAPPING SCALE)	1:250000			
LAST ACTIVITY	Early Pleistocene			
ACTIVITY RELIABILITY	Low reliability			
RECURRENCE INTERVAL (yr)	0			
SLIP-RATE (mm/yr)	0			
MAX CREDIBLE RUPTURE LENGTH	14			
MAX CREDIBLE SLIP (m)	0			
KNOWN SEISMIC EVENTS				
MAX CREDIBLE MAGNITUDE (Mw)	6.4			
MAX CREDIBLE INTENSITY (INQUA scale)				
STUDY QUALITY	LOW			
NOTES	e' giusto indicare AV in assenza di	indicazioni certe?		
REFERENCES				
FAULT CODE	AUTHORS	TITLE	REFERENCES	YEAR
93798	CERRINA FERONI A., MARTELLI L., MARTINELLI P., OTTRIA P.	Carta geologico strutturale dell'Appennino Emiliano Romagnolo alla scala 1:250000	Regione Emilia- Romagna - CNR	2002
93798	REGIONE EMILIA-ROMAGNA, ENI- AGIP, a cura di DI DIO G. (1998)	Riserve idriche sotterranee della Regione Emilia-Romagna.	S.EL.CA., Firenze	1998

Essa passerebbe in corrispondenza dell'area costiera prospiciente ma occorre tuttavia sottolineare che la qualità degli studi effettuati sulla stessa è bassa al pari della attendibilità delle informazioni sul grado di attività.

Per quanto riguarda la Geologia di sottosuolo anche la recente Carta Sismotettonica dell' Emilia-Romagna, alla scala 1:250.000, segnala le medesime strutture potenzialmente attive. Tali thrust tuttavia risultano collocati ad alcune migliaia di metri di profondità, dando luogo a strutture per definizione "cieche".

Pertanto sulla base di questi dati si può affermare che nell'area di indagine non vi sono strutture affioranti legate all'orogenesi appenninica certe di una certa rilevanza; anche la attendibilità riguardo al grado di attività di quella "capace" ipotizzata dagli studi è bassa; in conseguenza di ciò si può affermare che nel territorio oggetto di studio, almeno sulla base delle conoscenze scientifiche attuali, non vi siano situazioni accertate riconducibili a "zone di faglia attiva capace" in grado di condizionare in maniera consistente la pericolosità sismica locale soprattutto in termini di deformazioni/fagliazioni superficiali.

6 STUDIO DI MICROZONAZIONE SISMICA E RISPOSTA SISMICA LOCALE

6.1 Generalità

E' noto che le caratteristiche del moto sismico in corrispondenza di un substrato roccioso o "geofisico base" possono essere differenti da quelle in sommità della copertura, proprio a causa della presenza e spessore della copertura che modifica il moto sismico esercitato dal terreno.

Questa variazione è rappresentata dalla "Funzione di Amplificazione" la quale fornisce una chiara ed efficace rappresentazione dell'effetto filtrante del terreno sulle onde sismiche, ma la sua conoscenza non è comunque sufficiente per determinare le caratteristiche del moto sismico alla superficie del terreno.

E' possibile caratterizzare la risposta sismica locale (RSL) di un sito tramite la definizione di uno spettro di risposta in accelerazione, che è il tipo di rappresentazione utile per le applicazioni di ingegneria, associabile ad un dato scuotimento e ad un dato fattore di smorzamento.

Il moto sismico alla superficie del terreno è inoltre fortemente condizionato dai parametri del moto atteso al substrato roccioso o bedrock geofisico, cioè del terremoto di riferimento.

Inoltre una corretta valutazione del RSL non può prescindere da una modellazione geofisica realistica del sottosuolo in quanto le caratteristiche locali del sito condizionano, a parità di evento e di caratteristiche di propagazione, il moto sismico in output alla superficie.

Considerate le condizioni topografiche, geometriche, morfologiche, litostratigrafiche unitamente alle soluzioni tecnico-realizzative adottate, si ritiene opportuno effettuare una modellazione in condizioni monodimensionali.

Le analisi numeriche sono state effettuate tramite il codice STRATA (Kottke e Rathje, 2008), che modella una colonna di terreno come un continuo stratificato a comportamento visco-elastico lineare. Le equazioni del moto sono risolte nel dominio della frequenza attraverso il calcolo e la successiva convoluzione delle funzioni di trasferimento di ogni strato, analogamente a quanto fatto dal ben noto codice di calcolo SHAKE91 (Idriss e Sun, 1992).

La non linearità delle proprietà dinamiche, assunte indipendenti dalla frequenza, è portata in conto tramite l'approccio lineare equivalente. Secondo tale modello, il modulo di taglio G e il fattore di smorzamento D, che descrivono il comportamento meccanico di un materiale sotto sollecitazioni cicliche, vengono fatti dipendere dal livello della deformazione tangenziale vc indotta dalle sollecitazioni sismiche. A partire dai valori iniziali dei parametri di rigidezza e smorzamento con una prima analisi si determina un primo valore caratteristico (o effettivo) della deformazione tangenziale veff. Dalle curve G/G0- vc e D-vc, che esprimono il comportamento non lineare, si determinano quindi nuovi valori di G e D e si esegue una nuova analisi determinando un nuovo valore caratteristico. Il procedimento viene ripetuto fino a quando lo scarto percentuale tra i valori di G, D e veff viene ritenuto accettabile.

Per le analisi sui segnali/spettri in fase di input/output sono stati utilizzati i software SeismoSignal 5.1.2 e SeismoMatch vers. 2.1.2, sviluppati dalla soc. SeismoSoft, di cui si dispone della relativa licenza d'uso.

6.2 Modello e caratterizzazione dinamica del sottosuolo

Per quanto riguarda la caratterizzazione geotecnica dei terreni, non essendo stati analizzati direttamente e sperimentalmente tramite laboratorio dinamico/ciclico, sulla scorta delle esperienze condotte da vari autori in bibliografia (Idriss 90, Seed & Idriss, Seed 86, Darendeli & Stokoe 2001, Crespellani et Al. 2007) nonché dallo scrivente tramite prove dinamiche e cicliche effettuate su terreni simili appartenenti al medesimo contesto litostratigrafco e deposizionale, si sono valutate le curve presenti nel database del software Strata relative alle curve di decadimento del Modulo di taglio normalizzato (G/Go) e dello smorzamento (D%) per i materiali di sito, implementando il modello con le curve degli autori ritenute appropriate al caso in esame.

Pertanto in funzione della natura litologica e delle caratteristiche geotecniche e di deformabilità dei materiali sono state estratte le seguenti curve:

- Idriss Clay All (1990)
- Crespellani et Al. (2007) Plio-Pleistocene mean

Data la varietà tipologica dei materiali presenti in sito i terreni appartenenti ai Lit. V, A, SD ed SU, fino alla profondità di 30 mt, sono stati modellati tramite le curve per terreni argillosi di Idriss (1990), mentre per le marne argillose più profonde sono state utilizzate le curve di letteratura di Crespellani et Al. (2007), sviluppate per terreni simili sia in termini litologici e sovraconsolidazione (Formazione delle Argille Azzurre) che di profondità/carico citostatico.

Pertanto, in funzione della natura litologica e delle caratteristiche geotecniche e di deformabilità dei materiali, sono state adottate le seguenti curve:

Limi_Arg NC - Idriss 1990 (Clay):

La falda è stata assunta ad un livello costante medio pari a -5.0 m

Per il Bedrock si è assunto un damping=1.0% ed un peso di volume pari a 23.00 KN/m3 Data l'omogeneità litologica e stratigrafica delle aree indagate, le curve dei Log Vs rappresentativi di sito sono state principalmente derivate da un'analisi congiunta di MASW/REMI ed H/V stimando, al di sotto dei dati sperimentali desumibili dalle prove in array, un gradiente di circa 1.5 m/s/m, utile a definire la posizione del tetto del bedrock sismico, coerentemente a quanto rilevato in prove down-hole condotte su terreni simili in aree vicine; al di sotto dell'interfaccia con il bedrock sismico, identificato ad una profondità di circa 100 mt, con Vs = 900 m/s, si ipotizza un modesto incremento della velocità in onde Vs e, quindi, nel comportamento geofisico e di rigidezza dei materiali, determinando una sostanziale assenza di significativi fenomeni amplificativi nei periodi di interesse.

I profili di Vs sono stati poi sottoposti a partizione in funzione degli ambiti di frequenza e Vs da indagare e dei range di interesse progettuale, secondo il seguente input del modello 1D in Strata:

RSL- Soi	l profile		
Depth	Thickness		Vs
(m)	(m)	Soil Type	(m/s)
0	1	Limi_Arg NC	170
1	3.5	Limi_Arg NC	215
4.5	1.5	Limi_Arg NC	250
6	5	Limi_Arg NC	330
11	4	Limi_Arg NC	420
15	5	Limi_Arg NC	535
20	5	Limi_Arg NC	600
25	5	Limi_Arg NC	670
30	10	Sub Marnoso	685
40	10	Sub Marnoso	700
50	10	Sub Marnoso	715
60	10	Sub Marnoso	730
70	10	Sub Marnoso	745
80	10	Sub Marnoso	760
90	10	Sub Marnoso	775
100	Half-Space	Bedrock	900

6.3 III Livello di approfondimento – D.A.L. Nº 112 / 2007 - DGR 2193/2015 R.E.R.

Sulla base delle indicazioni contenute nella Del. Ass. Lgs. N° 112 / 2007 R.E.R. e successiva DGR 2193/2015, sono state effettuate analisi di RSL per via analitica utilizzando sia le informazioni dedotte dalle indagini sismiche di caratterizzazione del sottosuolo sia il moto sismico indicato dalla Regione Emilia Romagna per le aree studiate e scaricabili dal link "segnali di riferimento".

Come previsto da Indirizzi e Criteri per la Microzonazione Sismica, le analisi di Risposta Sismica Locale (RLS) sono state condotte considerando, nella simulazione, 3 differenti moti sismici al bedrock. I segnali sismici sono rappresentativi dello scuotimento atteso, per un periodo di ritorno di 475 anni (10% di probabilità di superamento in 50 anni), sul suolo di riferimento relativo alla categoria di sottosuolo A definita nella tabella 3.2.II delle Norme Tecniche per le Costruzioni del 2008 e 2018, ovvero con Vs30 superiore a 800 m/s.

La selezione e scalatura dei segnali di riferimento si basa sui valori di pericolosità sismica elaborati da INGV per il territorio nazionale resi disponibili per il territorio regionale sui punti di una griglia con passo 0.05 gradi nel sito web del Servizio Geologico, Sismico e dei Suoli, tema "Sismica Microzonazione Sismica".

Il valore di "arefg" relativo a ciascun sito analizzato si ottiene interpolando i valori di arefg definiti nei punti della griglia più prossimi al sito oppure utilizzando il valore del punto della griglia più vicino al sito di indagine.

Quindi il moto sismico (periodo di ritorno 475 anni) in termini di accelerogrammi relativi al sito analizzato è ottenuto moltiplicando le accelerazioni normalizzate dei segnali di riferimento per il valore di "arefg" ottenuto utilizzando il valore pesato derivato dall'interpolazione dei punti della griglia vicini.

Nodo più vicino

per cui, arrotondando, si assume: arefg = 0.184

Si tratta di accelerogrammi "naturali" estratti dalla banca dati accelerometrica "European Strong Motion database", con caratteristiche energetiche e di scuotimento (durata, contenuto in frequenza, ecc.) diverse tra loro, in modo da poter investigare, quanto più possibile, il comportamento del sottosuolo e la sua suscettibilità ai fenomeni amplificativi/dissipativi quando sottoposto ad azioni sismiche differenti.

I 3 segnali di riferimento all'interno della banca dati accelerometrica vengono identificati attraverso i seguenti codici:

- 1. 000046xa
- 2. 000126xa
- 3. 000354xa

Tali segnali, ciascuno scalato all'accelerazione di ancoraggio prevista al bedrock attraverso l'interpolazione per l'area di riferimento, risultano spettro-compatibili con lo spettro elastico di riferimento secondo le seguenti caratteristiche:

- la forma dello spettro di risposta normalizzato è rappresentativo del moto sismico atteso per un periodo di ritorno di 475 anni (con smorzamento pari al 5%);
- i valori di arefg di ogni comune sono riferiti al 10% di probabilità di superamento in 50 anni;

Pertanto lo spettro di risposta di riferimento a probabilità uniforme che descrive le caratteristiche del moto sismico atteso (periodo di ritorno di 475 anni e smorzamento pari al 5%) a partire dai valori di accelerazione massima orizzontale di picco al suolo (T = 0) sul nodo della griglia più vicino risulta:

T(s)	Sa/aref	PGA bedrock	Spettro scalato
0	1	0,184	0,184
0,1	2,21	0,184	0,40664
0,15	2,608	0,184	0,479872
0,2	2,6562	0,184	0,4887408
0,3	2,4033	0,184	0,4422072
0,4	1,9394	0,184	0,3568496
0,5	1,505	0,184	0,27692
0,75	0,9172	0,184	0,1687648
1	0,6359	0,184	0,1170056
1,5	0,3608	0,184	0,0663872
2	0,2462	0,184	0,0453008

Input Location: Bedrock

Name	Description	Туре	PGA (g)	PGV (cm/s)	Scale Factor
Allegato_4_SEGNALI_RER\000046xa_SCAL.txt		O utcrop	0.18	8.33	1.00
Allegato_4_SEGNALI_RER\000126xa_SCAL.txt		O utcrop	0.18	10.50	1.00
Allegato_4_SEGNALI_RER\000354xa_SCAL.txt		O utcrop	0.18	9.08	1.00

L'analisi puntuale mediante Strata è stata prodotta per ottenere una risposta riferita al piano campagna in condizioni di free field.

I parametri di calcolo generali adottati per la modellazione sono i seguenti:

Equivalent Lin	ear (EQL)			
Time Series				
False				
on				
y: 20 Hz				
n: 0.1				
D. Equivalent Linear Parameters				
Effective strain ratio:				
Error tolerance:				
Maximum number of iterations:				
	Equivalent Lin Time Series False On y: 20 Hz n: 0.1 Parameters n ratio: unce: of iterations:			

Quindi dalla modellazione geofisica del sottosuolo ed il modello di calcolo soprariportati si sono determinati gli accelerogrammi convoluti sino al piano campagna, i quali vengono definiti in funzione dell'accelerazione (g):

Serie temporali convolute Tempo/Accelerazione

I logs della PGA/profondità, PGV/profondità e Spostamento/Profondità dei tre sismi sono rappresentati nei grafici seguenti, dove in ordinata c'è la profondità (m) ed in ascissa rispettivamente l'accelerazione (g), la velocità (cm/sec) e lo spostamento (cm):

I valori medi di accelerazione massima (PGA), di velocità massima (PGV) e di spostamento (PGD) relativi agli accelerogrammi convoluti con Strata alle quote di riferimento assunte indicativamente al piano campagna mt sono i seguenti:

Superficie di riferimento: piano campagna

PGA	PGV	PGD
0.327 g	15.71 cm/sec	2.28 cm

I rapporti PGA/arefg e, quindi, il fattore di amplificazione in termini di PGA (FA_{PGA}) alla superficie di riferimento risulta: $FA_{PGA} = 1.785$

Lo spettro di risposta superficiale di ciascun sito viene sintetizzato nei seguenti grafici per i tre sismi unitamente a quello medio relativamente alla pseudo-accelerazione spettrale PSA, alla pseudo-velocità spettrale PSV ed allo spostamento PSD per uno smorzamento $\xi = 5.0$ %, in rosso è riportata la curva media di sintesi:

I risultati di questa analisi sono utilizzabili per il calcolo del fattore SI, Intensità di Housner, come richiesto nel terzo livello di approfondimento, definito dalla relazione:

$$SI = \int_{T_1}^{T_2} PSV_{(\xi=5\%)} dt$$
 dove PSV è lo spettro di risposta in pseudo velocità

L'Intensità di Housner (SI) è un indicatore della pericolosità sismica ed è definito come l'area sottesa dello spettro di risposta di pseudo velocità in un intervallo prefissato di frequenze ed è direttamente correlabile all'energia che viene dissipata nelle strutture durante un terremoto, e quindi espressione del possibile grado di danneggiamento degli edifici e/o opere.

Tramite SeismoSignal e SeismoMatch sono stati elaborati i segnali di output ottenendo gli spettri medi in Pseudo-velocità PSV sia al bedrock che in superficie, integrando i quali si ricava il valore dell'Intensità di Housner al bedrock (SI₀) ed in superficie (SI) nel range di primaria importanza per le strutture ovvero negli intervalli tra 0.1-0.5 sec, 0.5-1.0 sec, 0.5-1.5 sec e 0.1-2.5 sec (tra 0.4 Hz e 10 Hz) con smorzamento ξ del 5%:

Quindi tramite il rapporto SI/SI₀ è possibile desumere anche il relativo fattore di amplificazione (FA):

	Periodo	Bedrock	Soil	FA
INT SPETT.	0.1-0.5	6.792155	12.461141	1.835
INT SPETT.	0.5-1.0	9.627480	13.792061	1.433
INT SPETT.	0.5-1.5	16.115741	21.694143	1.346
INT SPETT.	0.1-2.5	29.162679	41.625551	1.427

Nei grafici seguenti viene presentato la funzione di trasferimento con relativo Fattore di Amplificazione considerando gli accelerogrammi applicati in posizione di "*Outcrop*", determinandone quindi il rapporto tra la risposta su superficie libera al bedrock ed piano campagna:

Dall'analisi monodimensionale, nell'ambito dei periodi di interesse, si possono rilevare frequenze di amplificazione di riferimento per i seguenti valori (f=valore di frequenza; Fa=fattore di amplificazione):

f = 2.20 hzFa = 1.62f = 4.65 hzFa = 2.65f = 6.82 hzFa = 2.20f = 9.85 hzFa = 1.98

Di seguito vengono altresì illustrati anche i diagrammi con i rapporti spettrali ed i profili che evidenziano la massima deformazione di taglio (Shear strain %) con la profondità:

In ultimo per meglio evidenziare gli effetti occorsi nei segnali a seguito delle analisi di convoluzione in superficie, si ritiene opportuno raffrontare gli spettri elastici medi finali con quello medio di input al bedrock, per le necessarie valutazioni progettuali/urbanistiche, in relazione alla caratteristiche di pericolosità sismica ed alla natura dei terreni.

SPETTRO ELASTICO MEDIO in output alla superficie di riferimento = piano campagna

Sulla base dell'utilizzo degli accelerogrammi forniti dalla Regione Emilia Romagna per gli studi di microzonazione sismica e dalla sovrapposizione degli spettri in input ed output, è possibile apprezzare la significativa amplificazione del segnale soprattutto negli ambiti ad alta frequenza (bassi

periodi, mentre già per periodi T≥0.45 s le ampiezze spettrali tendono a diminuire drasticamente, portandosi su valori prossimi o confrontabili con quelli propri dello spettro al bedrock, tipico per terreni rigidi. Tale comportamento, oltre alle caratteristiche degli input sismici utilizzati, è imputabile alla presenza, già dal primo sottosuolo, di terreni dotati di significativa rigidezza sino al bedrock, in grado di indurre modi caratteristici di vibrazione prevalentemente alle medie-alte frequenze, determinando un modesto comportamento deformativo ed una bassa capacità dissipativa.

6.4 Analisi di RSL allo SLV – DM 17/01/2018

6.4.1 Sismicità dell'area e pericolosità sismica di base

Per quanto riguarda le caratteristiche sismogenetiche e di pericolosità sismica di base dell'area ci si rapporta a quanto già esplicitato al Par. 5, con particolare riferimento alle zone sismogenetiche illustrate nel database DISS3, alle considerazioni sulla sismicità storica ed al valore di MWmax appropriato per il caso in esame che, come previsto dalla Zonazione ZS9 (Rapporto Conclusivo GdL INGV, 2004) per la zona n. 917, risulta Mw=6.14.

Nel caso specifico, su indicazione della progettazione, si definiscono i parametri relativi ad un fabbricato in classe d'uso III, vita nominale delle opere Vn ≥ 50 anni, vita di riferimento di 75 anni e per un tempo di ritorno di 712 anni relativo allo "Stato Limite di Salvaguardia della Vita".

L'azione sismica sul modello geotecnico è valutabile a partire da una "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale (di categoria "A" nelle NTC). Le valutazioni della "pericolosità sismica di base" derivano da studi condotti a livello nazionale, su dati aggiornati, con procedure trasparenti e metodologie validate.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita sia dai dati pubblicati sul sito <u>http://esse1.mi.ingv.it/</u> che definibile dal foglio excel scaricabile sul sito LL.PP denominato "Spettri-NTCver.1.0.3". Le forme spettrali previste dalle **NTC**, sulla base di analisi disaggregazione, sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri ag-F₀-Tc.

Tali forme spettrali sono contraddistinte da prescelte probabilità di superamento e vite di riferimento della costruzione (insieme definiscono il "periodo di ritorno dell'azione sismica), per individuare a partire dai dati di pericolosità sismica disponibili le seguenti azioni sismiche: *Coordinate di sito (ED50): Longitudine: 12.542175 – Latitudine: 44.01817*

SLATO	T _R	ag	Fo	Tc	S _e [g] 0.8					
LIMITE	[anni]	[g]	[-]	[s]	_				SLO	
SLO	45	0.063	2.463	0.279	0.7				SLD	
SLD	75	0.080	2.521	0.283	0.7				SLV	_
SLV	712	0.214	2.498	0.307	_				SLC	_
SLC	1462	0.280	2.486	0.319	0.6 -					
					0.5					_
										-
					0.4 -					-
					0.3					
					0.2					-
					-					_
					0.1 -					
					0					
					0	0.5 1	1.5 2	2.5	3 3.5	4 T [s]

Valori dei parametri a_g , F_o , T_c^* per i periodi di ritorno T_R associati a ciascuno SL

Pertanto per quanto riguarda l'area in oggetto, le carte del progetto INGV S1 (<u>http://esse1-gis.mi.ingv.it/</u>), nel nodo più vicino, prevedono per un periodo di ritorno di 475 anni (10% di probabilità di eccedenza in 50 anni) un valore del picco di accelerazione orizzontale atteso (PGA) compreso nell'intervallo 0.175-0.200 g e nell'intervallo 0.225-0.250 g per un tempo di ritorno pari a 975 anni (5% di probabilità di eccedenza in 50 anni). Interpolando linearmente i valori tabellati si ottiene un valore di 0.214g per un tempo di ritorno di 712 anni.

Diversamente l'analisi di disaggregazione fornita (<u>http://esse1-gis.mi.ingv.it/</u>) suggerisce per un periodo di ritorno di 975 anni la terna di valori medi Mw=5.180, distanza=7.36 Km ed ε =0.951. Per il periodo di ritorno di 475 anni gli stessi valori medi diventano Mw=5.140, distanza=9.14 Km ed ε =0.777. Secondo tale analisi i valori di magnitudo sembrano sottostimare quelli desumibili dalla storia sismica locale degli eventi più significativi e dalle previsioni della zonazione ZS9, mentre le distanza epicentrali sono compatibili con questi ultimi e con le zone sismogenetiche del catalogo DISS3 (Fig.1).

Figura 1. Risultati dell'analisi di disaggregazione per il nodo più vicino all'area in studio secondo le stime di pericolosità sismica del territorio nazionale e relative ad un periodo di ritorno di 475 (a) e 975 (b) anni. (<u>http://esse1-gis.mi.ingv.it/</u>)

Quindi l'azione sismica individuata tramite spettri di risposta elastici diviene di riferimento per caratterizzare la pericolosità sismica locale in funzione degli stati limite e per la scelta dei segnali utili alla risposta sismica locale; inoltre per la scelta delle distanze epicentrali utili alla ricerca degli accelerogrammi, di riferimento e/o che possono dare maggior contributo alla pericolosità sismica dell'area, diviene un importate riferimento l'analisi di disaggregazione (INGV S1) nonché specifiche valutazioni derivabili dal progetto DISS3.

6.4.2 Accelerogrammi – segnali di input per analisi numeriche

La scelta dei segnali di input (accelerogrammi) necessari allo sviluppo del modello di calcolo monodimensionale Equivalente-Lineare (EQL) viene condotta, sulla scorta dei parametri generali precedentemente definiti, da un lato secondo il criterio di spettro-compatibilità e dall'altro di coerenza e similitudine con le caratteristiche sismogenetiche dell'area in studio, di magnitudo del terremoto atteso e distanza epicentrale.

Le valutazioni generali sulla base di magnitudo, distanze epicentrali, meccanismi focali e spettro-compatibilità, hanno fatto convergere sulla scelta di n. 7 accelerogrammi di riferimento, attraverso una procedura di spettrocompatibilità con lo spettro normativo di riferimento allo SLV e ritenuti utili ad investigare il comportamento del modello di sottosuolo con i metodi adottati.

Gli accelerogrammi sono stati selezionati tramite IN-SPECTOR¹ vers. Rev-007, uno strumento software reso disponibile dagli autori G. Acunzo, A. Pagliaroli, G. Scasserra presso CNR –

IGAG, Roma e sviluppato al fine di addivenire ad una ricerca di segnali spettrocompatibili su una base di parametri di ricerca (magnitudo, distanza epicentrale, intensità di Arias, durata significativa, ecc.), con a monte un'analisi preliminare di disaggregazione sulla quale definire lo spettro elastico di riferimento.

Le combinazioni di segnali sono stati ricercati e selezionati utilizzando le seguenti banche dati:

- Banca dati europea ISESD²
- SIMBAD³ Selected Input Motions for displacement Based Assessment and Design sviluppato in seno al Politecnico di Milano.
- ITACA (ITalian ACcelerometric Archive)⁴.

1)

G. Acunzo, A. Pagliaroli, G. Scasserra

IN-SPECTOR: un software di support alla selezione di accelerogrammi naturali spettrocompatibili per analisi geotecniche e strutturali.

33° Convegno Nazionale GNGTS, Bologna 25-27 Novembre 2014, volume2, 107-114, ISBN: 978-88-940442-2-5.

 2) Ambraseys, N., Smit, P., Sigbjornsson, R., Suhadolc, P. and Margaris, B. Internet-Site for European Strong-Motion Data, European Commission, Research-Directorate General, Environment and Climate Programme (2002) <u>http://www.isesd.cv.ic.ac.uk/ESD/</u>
 3)

SIMBAD: a database with Selected Input Motions for displacement-Chiara Smerzini & Roberto Paolucci Department of Structural Engineering Politecnico di Milano, ITALY - 2011

4) Luzi L, Pacor F, Puglia R (2017). Italian Accelerometric Archive v 2.3. INGV. doi: 10.13127/ITACA.2.3

La coppia Mw e distanza epicentrale di riferimento è stata valutata, oltre che nei confronti delle caratteristiche di pericolosità sismica generale richiamate al precedente paragrafo (Mw= 6.14) e della vicinanza alle sorgenti sismogenteiche (distanza epicentrale max contributo da disaggregazione=7.36-9.14 Km). Dal grafico di disaggregazione è apprezzabile come il sostanziale contributo alla pericolosità si concentri per sorgenti entro i 20 Km di distanza mentre, per eventi con magnitudo maggiori di 6.0, una modesta aliquota venga fornita anche da eventi più distanti (30-60 km).

Di seguito quindi si riporta una tabella riepilogativa dei segnali selezionati dai database sopracitati (in funzione anche delle distanze epicentrali), adattati poi tramite opportuni fattori di scala, al fine di ottenere la spettrocompatibilità entro ambiti di tolleranza pari a -10% e +30% rispetto allo spettro target di progetto:

				Epic. Distance	Subsoil					Fault
Event	Earthquake	Date	MW	[Km]	class (EC8)	SF	Drms	la [cm/s]	SD [s]	Mechanism
000055xa	Friuli	06/05/1976	6.5	23	А	0.600	0.019	28.765	4.35	thrust
001243xa	Izmit (aftershock)	13/09/1999	5.8	15	А	2.942	0.023	31.681	6.09	oblique
003802xa	SE of Tirana	09/01/1988	5.9	7	А	1.886	0.033	33.878	6.13	thrust
004675xa	South Iceland	17/06/2000	6.5	13	А	1.626	0.022	42.808	4.48	strike slip
007142ya	Bingol	01/05/2003	6.3	14	А	0.720	0.014	42.752	6.79	strike slip
MMO-HGN	CENTRAL_ITALY	30/10/2016	6.5	19.2	A*	1.134	0.020	71.625	12.8	normal
IN0386ya	Christchurch	13/06/2011	6	5.1	A*	0.379	0.027	71.860	9.16	reverse
Mean:			6.21	13.76		1.33	0.02	46.20	7.11	

Quale criterio di scelta, fra tutte le combinazioni (settuple), si è ritenuto di utilizzare segnali registrati su suolo A, di magnitudo media comparabile con la Mwmax attesa per il sito, considerando l'adeguatezza dei meccanismi focali al contesto sismogenetico che minimizzi il fattore di scala e il valore Drms.

Nella scelta si è altresì cercato di accostare singoli segnali per ciascun evento sismico, con accelerogrammi che presentanto una varobilità di parametri come durata (aspetto fortemente dipendente dalla distanza nonché da fattori geologici e sismogenetici) e di frequenza fondamentale. In tal senso l'Intensità di Arias Ia (cm/s), oltre agli altri parametri, è stata utilizzata come indicatore per valutare il contenuto energetico rappresentativo di ciascun segnale.

Le singole distanze e quella media epicentrale pari a 13.76 km, derivabile dalla settupla prescelta, si ritengono adeguate e compatibili sia con i contributi di pericolosità derivabili da disaggregazione che rispetto agli eventi maggiormente significativi per la storia sismica locale.

Gli accelerogrammi sono stati opportunamente scalati (SF = Scale Factor) al fine di garantire la migliore spettro-compatibilità nei possibili periodi di interesse progettuale ed essere utilizzati come input per le analisi 1D, ottenendo il minor fattore di scala medio possibile, pari a **FS = 1.33**.

Accelerogrammi di input:

Input Motion

	Name	Description	Туре	PGA (g)	PGV (cm/s)	Scale Factor
1	Segnali Input\000055xa_record(scaled).txt		Outcrop	0.21	12.58	1.00
2	Segnali Input\001243xa_record(scaled).txt		Outcrop	0.21	16.07	1.00
3	Segnali Input\003802xa_record(scaled).txt		Outcrop	0.21	10.22	1.00
4	Segnali Input\004675xa_record(scaled).txt		Outcrop	0.21	26.23	1.00
5	Segnali Input\007142ya_record(scaled).txt		Outcrop	0.21	15.08	1.00
6	Segnali Input\IN0386ya_record(scaled).txt		Outcrop	0.21	29.67	1.00
7	Segnali Input\MMOHGN(scaled).txt		Outcrop	0.21	12.94	1.00

6.4.3 ANALISI DI RISPOSTA SISMICA LOCALE SLV

L'analisi puntuale mediante Strata è stata riferita al piano campagna in condizioni di free field. I parametri di analisi generali adottati per la modellazione/discretizzazione sono i seguenti:

Quindi dal modello di calcolo monodimensionale EQL mediante Strata si sono ottenuti gli accelerogrammi convoluti al piano campagna e, attraverso successive procedure di integrazione dei segnali in accelerazione, è possibile altresì generare le corrispondenti serie temporali in termini di Tempo/Velocità e Tempo/Spostamento.

Con l'inviluppo dei valori massimi lungo la verticale, si sono ottenuti i profili dei massimi di PGA/profondità, PGV/profondità, Spostamento/Profondità dei sismi selezionati; nei grafici seguenti vengono quindi rappresentati con la profondità (m) in ordinata ed in ascissa rispettivamente accelerazione (g), velocità (cm/sec), spostamento (cm):

I valori medi di accelerazione massima (*PGA*), di velocità massima (*PGV*) e di spostamento (*PGD*) relativi agli accelerogrammi convoluti con Strata alle quote di riferimento assunte indicativamente al piano campagna mt sono i seguenti:

Superficie di riferi	mento: piano	o campagna	
	PGA	PGV	PGD
	0.413 g	24.17 cm/sec	8.09 cm

I rapporti PGA/PGA₀ (PGA₀ = accelerazioneal bedrock) e, quindi, il fattore di amplificazione in termini di PGA (FA_{PGA}) alla superficie di riferimento risulta: **FA_{PGA} = 1.953**

Dall'analisi condotta nel dominio delle frequenze lo spettro di risposta superficiale di sito viene sintetizzato nei seguenti grafici per i tutti sismi unitamente a quello medio relativamente alla pseudo-accelerazione *PSA*, alla pseudo-velocità spettrale *PSV* ed allo spostamento *PSD* per uno smorzamento $\xi = 5.0$ %, in rosso è riportata la curva media di sintesi:

I risultati di questa analisi sono utilizzabili per il calcolo del fattore SI, *Intensità di Housner*, come richiesto nel terzo livello di approfondimento, definito dalla relazione:

$$SI = \int_{T_1}^{T_2} PSV_{(\xi=5\%)} dt$$
 dove PSV è lo spettro di risposta in pseudo velocità

L'Intensità di Housner (SI) è un indicatore della pericolosità sismica ed è definito come l'area sottesa dello spettro di risposta di pseudo velocità in un intervallo prefissato di frequenze ed è direttamente correlabile all'energia che viene dissipata nelle strutture durante un terremoto, e quindi espressione del possibile grado di danneggiamento degli edifici e/o opere.

Tramite SeismoSignal e SeismoMatch sono stati elaborati i segnali di output ottenendo gli spettri medi in Pseudo-velocità PSV sia al bedrock che in superficie, integrando i quali si ricava il valore dell'Intensità di Housner al bedrock (SI₀) ed in superficie (SI) nel range di primaria importanza per le strutture ovvero negli intervalli tra 0.1-0.5 sec, 0.5-1.0 sec, 0.5-1.5 sec e 0.1-2.5 sec (tra 0.4 Hz e 10 Hz) con smorzamento <u> ξ del 5%</u>:

 T^{γ}

Quindi tramite il rapporto SI/SI₀ è possibile desumere anche il relativo fattore di amplificazione (FA):

	Periodo	Bedrock	Soil	FA
INT SPETT.	0.1-0.5	8.565622	15.615180	1.823
INT SPETT.	0.5-1.0	13.570188	19.168726	1.413
INT SPETT.	0.5-1.5	25.937201	33.798551	1.303
INT SPETT.	0.1-2.5	57.750333	74.374667	1.288

Nei grafici seguenti, per ciascuna zona, viene presentata la funzione di trasferimento con relativo Fattore di Amplificazione considerando gli accelerogrammi applicati in posizione di "*Outcrop*" sul bedrock geofisico in profondità e determinandone quindi la risposta su superficie libera al piano campagna. Quindi dall'analisi monodimensionale equivalente lineare si possono rilevare picchi significativi di amplificazione (Fa_i=fattore di amplificazione) per determinate frequenze caratteristiche f_i, di cui la più bassa (f0) risulta essere la frequenza fondamentale del modello analizzato:

Dall'analisi monodimensionale, nell'ambito dei periodi di interesse, si possono rilevare frequenze di amplificazione di riferimento per i seguenti valori (f=valore di frequenza; Fa=fattore di amplificazione):

Di seguito vengono altresì illustrati anche i diagrammi con i rapporti spettrali ed i profili che evidenziano la massima deformazione di taglio (Shear strain %) con la profondità:

A titolo puramente illustrativo si ritiene opportuno comparare gli spettri elastici ritenuti caratteristici per il sito in esame a seguito delle analisi di RSL effettuate (spettro medio) con quelli semplificati di normativa allo stato limite SLV per un Tr=712 anni; ciò potrà supportare le necessarie valutazioni progettuali, in relazione a ciascuna tipologia di opera e piani di riferimento per la stima dell'azione sismica e prestazioni attese.

SPETTRO ELASTICO MEDIO_SLV alla superficie di riferimento = piano campagna

7 CONCLUSIONI GENERALI RSL

L'area in studio in virtù dei dati sperimentali e delle caratteristiche geologico-morfologiche del sito presenta un comportamento dinamico sostanzialmente omogeneo e tale da consentire l'esecuzione di analisi secondo modelli 1D. Al proposito si sono utilizzati segnali sismici conformi sia alla normativa regionale (per quanto riguarda la pianificazione urbanistica e le problematiche di microzonazione sismica) sia alle nuove NTC 2018 per quanto riguarda le necessità di progettazione allo SLV.

Chiaramente i diversi gradi di pericolosità sismica di base vengono tenuti in conto anche dalle differenti condizioni di spettrocompatibilità dei segnali di input che, per la progettazione di opere di Classe III, risultano più severi rispetto ai segnali regionali e, data la significativa rigidezza dei terreni (valori elevati di VS su grandi spessori di sottosuolo), portano a fattori di amplificazione leggermente superiori, soprattutto ai bassi periodi spettrali.

Da quanto sopra risulta evidente i picchi di amplificazione sono generalmente condizionati dai contrasti di rigidezza fra i vari sismostrati sovrapposti ovvero dalla loro continuità e, chiaramente, dalla posizione e rigidezza del bedrock sismico.

In particolare la presenza di una sottile copertura superficiale a bassa velocità a immediato contatto con i terreni sovraconsolidati della formazione marina (dapprima moderatamentre decompressa e poi inalterata) di significativa rigidezza, fa si che lungo la colonna di terreno studiata la propagazione delle onde sismiche nei livelli più deformabili induca solo modeste deformazioni (ϵ ≤0.035%), quasi alla stregua della condizione elastica lineare; ciò comporta un limitato effetto di smorzamento e di dissipazione energetica.

In ogni caso in sede di progettazione, onde dimensionare adeguatamente gli apparati fondali alle azioni/momenti taglianti prevedibili nonché conseguenti effetti di interazione cinematica, sarà opportuno valutare le deformazioni massime di taglio (max shear strain) attese alle zone di interfaccia maggiormente significative.

Il massimo picco di amplificazione registrabile in termini di ampiezza delle accelerazioni spettrali viene rilevato nell'ambito di periodi compresi fra 0.15 e 0. 25 s, dopodiché si determina una rapida diminuzione delle ampiezze che da T≥0.41s divengono addirittura inferiori a quelle proprie dello spettro di normativa di categoria B (allo SLV).

In ogni caso per periodi spettrali T≤0.33 s lo spettro medio evidenzia ampiezze superiori anche allo spettro di categoria D.

Tale modalità di risposta risulta chiaramente condizionata da terreni compatti a media – elevata rigidezza sismica, con un assetto litostratigrafico caratterizzato da contrasti di impedenza significativi solo a bassa profondità, in grado di concentrare gli effetti di amplificazione prevalentemente su range di frequenze da medie ad elevate.

Per quanto attiene alla progettazione esecutiva, con riferimento allo SLV ed in funzione dei modi di vibrare propri delle opere in progetto, si dovrà fare riferimento ai risultati illustrati al Paragrafo 6.4, potendo altresì risultare utile un raffronto con i corrispondenti spettri di normativa (riferiti alla Classe III Vn 50) al fine di valutare le accelerazioni spettrali attese nei range di interesse, nonché le prestazioni attese dalle opere ed il comportamento del sistema terreno/struttura.

Il Progettista in funzione delle esigenze progettuali e delle relative metodologie di analisi/calcolo potrà utilizzare, per quanto attiene il solo SLV oggetto di calcolo, lo spettro elastico "medio" (vedi tabelle numeriche in allegato n. 7), oppure determinare sullo stesso adeguate forme spettrali semplificate e coerenti con le metodologie normative adottate per la "normalizzazione" (formulazione 3.2.4 – 3.2.9 delle NTC 2018). In alternativa potrà altresì scegliere lo spettro rappresentativo, fra quelli selezionati, secondo una adeguato percentile di riferimento della distribuzione di dati (in relazione al grado di confidenza ricercato) o, addirittura, selezionare quello maggiormente penalizzante per i fini progettuali.

Allo stesso modo gli "spettri di progetto" dovranno essere elaborati e/o scalati (se di tipo semplificato) secondo opportuni valori di Damping (fattore di smorzamento), differente dal 5% adottato per la definizione dello spettro elastico in free field e dipendente dal fattore di struttura di progetto (in base alle caratteristiche strutturali dell'opera e/o dell'interazione opera/terreno).

Qualora risultasse necessario valutare selettivamente i singoli accelerogrammi (e/o relativi spettri elastici), sia al bedrock che convoluti al piano campagna, sarà possibile farlo anche in funzione dei rispettivi parametri di scuotimento (ground motion parameter) riepilogati in allegato n. 5.

All'occorrenza ed in relazione alle esigenze progettuali andrà valutata l'interazione delle opere di fondazione ed in elevazione con le caratteristiche geotecniche e sismiche dei siti oggetto di studio, in relazione alle modalità realizzative, alle caratteristiche strutturali ed ai parametri di pericolosità sismica e di scuotimento definiti nel presente studio.

Per quanto riguarda gli aspetti di Microzonazione Sismica ex DGR 2193/2015 si potrà fare riferimento alle azioni sismiche (PGA) e fattori di amplificazione (SI/SI0) riepilogati al Paragrafo 6.3 del presente studio e, in particolare, a quanto illustrato alle pag. 27 e 28. I relativi parametri di scuotimento unitamente ai dati dello spettro medio ottenuto vengono riepilogati in allegato n. 4 e 6.

Un eventuale approfondimento delle indagini ed analisi sin qui condotte potrà essere sviluppato allo scopo di ottenere informazioni più puntuali sulle azioni sismiche nonché di natura geotecnica e sul comportamento dinamico e deformativo dei materiali in relazione alle soluzioni esecutive ed agli stati limite di riferimento, così come previsto nel DM 17/01/2018.

Rimini, gennaio 2019

ALLEGATI

Allegato n. 1 COROGRAFIA

C.T.R. SCALA I: 25.000

TAVOLA 256 SE - RIMINI

) Area di studio

Allegato n. 2 C O R O G R A F I A

C.T.R. SCALA I: 2.000

FOGLIO 256 RIMINI - ELEMENTO 152 - 153

R1 - Prova Re.Mi.

H1 - Prova HVSR

M1 - Prova MASW

INDAGINI GEOFISICHE

COVIGNANO_PAPA GIOVANNI, HV1

Instrument: TRZ-0054/01-09 Data format: 16 byte Full scale [mV]: n.a. Start recording: 30/10/18 15:08:23 End recording: 30/10/18 15:28:24 Channel labels: NORTH SOUTH; EAST WEST ; UP DOWN GPS data not available Trace length: 0h20'00". Analyzed 65% trace (manual window selection) Sampling rate: 128 Hz Window size: 30 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 9.38 ± 0.1 Hz (in the range 0.0 - 10.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	9.38 > 0.33	ОК			
n _c (f ₀) > 200	7312.5 > 200	ОК			
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 451 times	ОК			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	3.438 Hz	OK			
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$			NO		
A ₀ > 2	2.14 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.01056 < 0.05	OK			
$\sigma_{f} < \varepsilon(f_{0})$	0.09901 < 0.46875	ÖK			

0.1711 < 1.58

OK

	-
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f _o	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f_0
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
,	be multiplied or divided
$\sigma_{logH/V}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Report prova Re.Mi.

SCHEMA GEOMETRICO

ANALISI SPETTRALE

Frequenza/velocità di fase

save selected spectrum analyze saved spectrum

COVIGNANO_PAPA GIOVANNI, MASW1

 Start recording: 17/12/18 12:09:58
 End recording: 17/12/18 12:09:59

 Trace length:
 0h00'01".

 Sampling rate:
 8000 Hz

Channel labels: CH01 ; CH02 ; CH03 ; CH04 ; CH05 ; CH06 ; CH07 ; CH08 ; CH09 ; CH10 ; CH11 ; CH12 ; CH13 ; CH14 ; CH15 ; CH16 ; CH17 ; CH18 ; CH19 ; CH20 ; CH21 ; CH22 ; CH23 ; CH24

Array geometry (x): 0.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0 19.0 21.0 23.0 25.0 27.0 29.0 31.0 33.0 35.0 37.0 39.0 41.0 43.0 45.0 47.0 49.0 m.

MODELLED RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
1.00	1.00	170	0.45
4.50	3.50	215	0.40
6.00	1.50	250	0.40
11.00	5.00	330	0.40
15.00	4.00	420	0.40
20.00	5.00	535	0.35
25.00	5.00	600	0.35
30.00	5.00	670	0.35
inf.	inf.	670	0.42

Vs eq(0.0-30.0)=385m/s

∨s [m/s]

ALLEGATO N. 4 PARAMETRI DI SCUOTIMENTO - ACCELEROGRAMMI DI INPUT

000046xa	
----------	--

Parameter	Corrected Accelerogram
Max. Aceleration (g)	0.184
Time of Max. Aceleration (sec)	2.41
Max. Velocity (cm/sec)	8.33271
Time of Max. Velocity (sec)	2.49
Max. Displacement (cm)	0.83545
Time of Max. Displacement (sec)	2.405
Vmax / Amax: (sec)	0.04616
Acceleration RMS: (g)	0.03539
Velocity RMS: (cm/sec)	1.70174
Displacement RMS: (cm)	0.14147
Arias Intensity: (m/sec)	0.38226
Characteristic Intensity (Ic)	0.02963
Specific Energy Density (cm2/sec)	57.36798
Cumulative Absolute Velocity (cm/sec)	457.46301
Acceleration Spectrum Intensity (g*sec)	0.15745
Velocity Spectrum Intensity (cm)	34.49948
Housner Intensity (cm)	23.37274
Sustained Maximum Acceleration (g)	0.15021
Sustained Maximum Velocity (cm/sec)	6.23271
Effective Design Acceleration (g)	0.18035
A95 parameter (g)	0.18075
Predominant Period (sec)	0.24
Mean Period (sec)	0.26491
Significant Duration:	13.475
Effective Duration:	13.275

000126xa	
Parameter	Corrected Accelerogram
Max. Aceleration (g)	0.184
Time of Max. Aceleration (sec)	9.815
Max. Velocity (cm/sec)	10.50664
Time of Max. Velocity (sec)	9.75
Max. Displacement (cm)	0.8683
Time of Max. Displacement (sec)	9.835
Vmax / Amax: (sec)	0.05821
Acceleration RMS: (g)	0.01852
Velocity RMS: (cm/sec)	1.17477
Displacement RMS: (cm)	0.15036
Arias Intensity: (m/sec)	0.10558
Characteristic Intensity (Ic)	0.01126
Specific Energy Density (cm2/sec)	27.57396
Cumulative Absolute Velocity (cm/sec)	147.8751
Acceleration Spectrum Intensity (g*sec)	0.14266
Velocity Spectrum Intensity (cm)	33.3236
Housner Intensity (cm)	24.98575
Sustained Maximum Acceleration (g)	0.10454
Sustained Maximum Velocity (cm/sec)	4.78707
Effective Design Acceleration (g)	0.18441
A95 parameter (g)	0.18354
Predominant Period (sec)	0.28
Mean Period (sec)	0.32783
Significant Duration:	3.53

Effective Duration:

000354xa	
Parameter	Corrected Accelerogram
Max. Aceleration (g)	0.184
Time of Max. Aceleration (sec)	7.525
Max. Velocity (cm/sec)	9.08494
Time of Max. Velocity (sec)	5.755
Max. Displacement (cm)	1.94977
Time of Max. Displacement (sec)	13.435
Vmax / Amax: (sec)	0.05033
Acceleration RMS: (g)	0.02855
Velocity RMS: (cm/sec)	2.16644
Displacement RMS: (cm)	0.41951
Arias Intensity: (m/sec)	0.41287
Characteristic Intensity (Ic)	0.02766
Specific Energy Density (cm2/sec)	154.2972
Cumulative Absolute Velocity (cm/sec)	576.186
Acceleration Spectrum Intensity (g*sec)	0.15874
Velocity Spectrum Intensity (cm)	42.22709
Housner Intensity (cm)	38.88056
Sustained Maximum Acceleration (g)	0.16415
Sustained Maximum Velocity (cm/sec)	8.11934
Effective Design Acceleration (g)	0.17834
A95 parameter (g)	0.18169
Predominant Period (sec)	0.14
Mean Period (sec)	0.36994
Significant Duration:	15.355
Effective Duration:	14.645

VALORI MEDI	
Max. Aceleration (g)	0.184
Time of Max. Aceleration (sec)	6.583
Max. Velocity (cm/sec)	9.308
Time of Max. Velocity (sec)	5.998
Max. Displacement (cm)	1.218
Time of Max. Displacement (sec)	8.558
Vmax / Amax: (sec)	0.052
Acceleration RMS: (g)	0.027
Velocity RMS: (cm/sec)	1.681
Displacement RMS: (cm)	0.237
Arias Intensity: (m/sec)	0.300
Characteristic Intensity (Ic)	0.023
Specific Energy Density (cm2/sec)	79.746
Cumulative Absolute Velocity (cm/se	393.841
Acceleration Spectrum Intensity (g*se	0.153
Velocity Spectrum Intensity (cm)	36.683
Housner Intensity (cm)	29.080
Sustained Maximum Acceleration (g)	0.140
Sustained Maximum Velocity (cm/sec	6.380
Effective Design Acceleration (g)	0.181
A95 parameter (g)	0.182
Predominant Period (sec)	0.220
Mean Period (sec)	0.321
Significant Duration (sec):	10.787
Effective Duration (sec):	10.310

PARAMETRI DI SCUOTIMENTO - ACCELEROGRAMMI DI OUTPUT

3.01

000046xa		000126xa		000354xa		VALORI MEDI	
Parameter	Corrected Accelerogram	Parameter	Corrected Accelerogram	Parameter	Corrected Accelerogram		
Max. Aceleration (g)	0.3195	Max. Aceleration (g)	0.33458	Max. Aceleration (g)	0.32764	Max. Aceleration (g)	0.327
Time of Max. Aceleration (sec)	2.59	Time of Max. Aceleration (sec)	9.98	Time of Max. Aceleration (sec)	7.7	Time of Max. Aceleration (sec)	6.757
Max. Velocity (cm/sec)	16.31018	Max. Velocity (cm/sec)	14.82584	Max. Velocity (cm/sec)	15.89195	Max. Velocity (cm/sec)	15.676
Time of Max. Velocity (sec)	2.645	Time of Max. Velocity (sec)	9.87	Time of Max. Velocity (sec)	7.745	Time of Max. Velocity (sec)	6.753
Max. Displacement (cm)	1.15901	Max. Displacement (cm)	1.16943	Max. Displacement (cm)	2.11865	Max. Displacement (cm)	1.482
Time of Max. Displacement (sec)	2.56	Time of Max. Displacement (sec)	9.98	Time of Max. Displacement (sec)	13.56	Time of Max. Displacement (sec)	8.700
Vmax / Amax: (sec)	0.05204	Vmax / Amax: (sec)	0.04517	Vmax / Amax: (sec)	0.04944	Vmax / Amax: (sec)	0.049
Acceleration RMS: (g)	0.07005	Acceleration RMS: (g)	0.035	Acceleration RMS: (g)	0.05452	Acceleration RMS: (g)	0.053
Velocity RMS: (cm/sec)	2.93977	Velocity RMS: (cm/sec)	1.78384	Velocity RMS: (cm/sec)	3.0574	Velocity RMS: (cm/sec)	2.594
Displacement RMS: (cm)	0.21115	Displacement RMS: (cm)	0.22651	Displacement RMS: (cm)	0.47507	Displacement RMS: (cm)	0.304
Arias Intensity: (m/sec)	1.49768	Arias Intensity: (m/sec)	0.37712	Arias Intensity: (m/sec)	1.50587	Arias Intensity: (m/sec)	1.127
Characteristic Intensity (Ic)	0.08251	Characteristic Intensity (Ic)	0.02927	Characteristic Intensity (Ic)	0.07299	Characteristic Intensity (Ic)	0.062
Specific Energy Density (cm2/sec)	171.15935	Specific Energy Density (cm2/sec)	63.56205	Specific Energy Density (cm2/sec)	307.306	Specific Energy Density (cm2/sec)	180.676
Cumulative Absolute Velocity (cm/sec)	914.2834	Cumulative Absolute Velocity (cm/sec)	277.9065	Cumulative Absolute Velocity (cm/sec)	1054.548	Cumulative Absolute Velocity (cm/see	748.913
Acceleration Spectrum Intensity (g*sec)	0.30761	Acceleration Spectrum Intensity (g*sec)	0.25743	Acceleration Spectrum Intensity (g*sec)	0.30963	Acceleration Spectrum Intensity (g*se	0.292
Velocity Spectrum Intensity (cm)	60.91907	Velocity Spectrum Intensity (cm)	50.4745	Velocity Spectrum Intensity (cm)	61.51031	Velocity Spectrum Intensity (cm)	57.635
Housner Intensity (cm)	36.28142	Housner Intensity (cm)	36.35688	Housner Intensity (cm)	51.7619	Housner Intensity (cm)	41.467
Sustained Maximum Acceleration (g)	0.2819	Sustained Maximum Acceleration (g)	0.20797	Sustained Maximum Acceleration (g)	0.28067	Sustained Maximum Acceleration (g)	0.257
Sustained Maximum Velocity (cm/sec)	10.59674	Sustained Maximum Velocity (cm/sec)	6.78835	Sustained Maximum Velocity (cm/sec)	12.3035	Sustained Maximum Velocity (cm/sec	9.896
Effective Design Acceleration (g)	0.31282	Effective Design Acceleration (g)	0.33532	Effective Design Acceleration (g)	0.31871	Effective Design Acceleration (g)	0.322
A95 parameter (g)	0.31386	A95 parameter (g)	0.33207	A95 parameter (g)	0.32186	A95 parameter (g)	0.323
Predominant Period (sec)	0.24	Predominant Period (sec)	0.2	Predominant Period (sec)	0.14	Predominant Period (sec)	0.193
Mean Period (sec)	0.23789	Mean Period (sec)	0.26853	Mean Period (sec)	0.28366	Mean Period (sec)	0.263
Significant Duration:	13.415	Significant Duration:	3.32	Significant Duration:	13.34	Significant Duration (sec):	10.025
Effective Duration:	13.36	Effective Duration:	3.385	Effective Duration:	13.225	Effective Duration (sec):	9.990

PARAMETRI DI SCUOTIMENTO - ACCELEROGRAMMI DI INPUT

000055xa		001243xa		003802xa		004675xa	
Parameter	Corrected Accelerogram	Parameter	Corrected Accelerogram	Parameter	Corrected Accelerogram	Parameter	Corrected Accelerogra
Max. Aceleration (g)	0.21404	Max. Aceleration (g)	0.21404	Max. Aceleration (g)	0.21404	Max. Aceleration (g)	0.21404
Time of Max. Aceleration (sec)	4.02	Time of Max. Aceleration (sec)	4	Time of Max. Aceleration (sec)	4.83	Time of Max. Aceleration (sec)	15.54
Max. Velocity (cm/sec)	1.26E+01	Max. Velocity (cm/sec)	16.07701	Max. Velocity (cm/sec)	10.22595	Max. Velocity (cm/sec)	26.24341
Time of Max. Velocity (sec)	3.54	Time of Max. Velocity (sec)	3.92	Time of Max. Velocity (sec)	4.52	Time of Max. Velocity (sec)	16.35
Max. Displacement (cm)	7.6625	Max. Displacement (cm)	4.16388	Max. Displacement (cm)	9.13727	Max. Displacement (cm)	6.33276
Time of Max. Displacement (sec)	36.53	Time of Max. Displacement (sec)	3.65	Time of Max. Displacement (sec)	11.96	Time of Max. Displacement (sec)	14.43
Vmax / Amax: (sec)	0.05991	Vmax / Amax: (sec)	0.07657	Vmax / Amax: (sec)	0.0487	Vmax / Amax: (sec)	0.12498
Acceleration RMS: (g)	0.02261	Acceleration RMS: (g)	0.03279	Acceleration RMS: (g)	0.04287	Acceleration RMS: (g)	0.02036
Velocity RMS: (cm/sec)	1.73859	Velocity RMS: (cm/sec)	3.36532	Velocity RMS: (cm/sec)	3.16857	Velocity RMS: (cm/sec)	2.44825
Displacement RMS: (cm)	4.52552	Displacement RMS: (cm)	1.88518	Displacement RMS: (cm)	5.43406	Displacement RMS: (cm)	2.31186
Arias Intensity: (m/sec)	0.28765	Arias Intensity: (m/sec)	0.31681	Arias Intensity: (m/sec)	0.33878	Arias Intensity: (m/sec)	0.42808
Characteristic Intensity (Ic)	0.02054	Characteristic Intensity (Ic)	0.02596	Characteristic Intensity (Ic)	0.0307	Characteristic Intensity (Ic)	0.02378
Specific Energy Density (cm2/sec)	110.41941	Specific Energy Density (cm2/sec)	216.5413	Specific Energy Density (cm2/sec)	120.0766	Specific Energy Density (cm2/sec)	401.5325
Cumulative Absolute Velocity (cm/sec)	353.2382	Cumulative Absolute Velocity (cm/sec)	330.9516	Cumulative Absolute Velocity (cm/sec)	328.7403	Cumulative Absolute Velocity (cm/sec)	434.4993
Acceleration Spectrum Intensity (g*sec)	0.18433	Acceleration Spectrum Intensity (g*sec)	0.20543	Acceleration Spectrum Intensity (g*sec)	0.16614	Acceleration Spectrum Intensity (g*sec)	0.20947
Velocity Spectrum Intensity (cm)	56.03748	Velocity Spectrum Intensity (cm)	70.92101	Velocity Spectrum Intensity (cm)	49.7538	Velocity Spectrum Intensity (cm)	79.1212
Housner Intensity (cm)	44.06769	Housner Intensity (cm)	64.83378	Housner Intensity (cm)	41.5084	Housner Intensity (cm)	76.46128
Sustained Maximum Acceleration (g)	0.16209	Sustained Maximum Acceleration (g)	0.14131	Sustained Maximum Acceleration (g)	0.15492	Sustained Maximum Acceleration (g)	0.17727
Sustained Maximum Velocity (cm/sec)	8.98469	Sustained Maximum Velocity (cm/sec)	12.79194	Sustained Maximum Velocity (cm/sec)	7.89679	Sustained Maximum Velocity (cm/sec)	13.7283
Effective Design Acceleration (g)	0.21622	Effective Design Acceleration (g)	0.21138	Effective Design Acceleration (g)	0.20621	Effective Design Acceleration (g)	0.21064
A95 parameter (g)	0.21135	A95 parameter (g)	0.21243	A95 parameter (g)	0.21135	A95 parameter (g)	0.21026
Predominant Period (sec)	0.26	Predominant Period (sec)	0.24	Predominant Period (sec)	0.12	Predominant Period (sec)	0.24
Mean Period (sec)	0.39546	Mean Period (sec)	0 49249	Mean Period (sec)	0.28059	Mean Period (sec)	0 47703
Significant Duration:	4 36	Significant Duration:	6.1	Significant Duration:	6 14	Significant Duration:	4 49
007142ya		MMO-HGN		IN0368ya		VALORI MEDI	
007142ya Parameter	Corrected Accelerogram	MMO-HGN Parameter	Corrected Accelerogram	IN0368ya Parameter	Corrected Accelerogram		
007142ya Parameter Max. Aceleration (g)	Corrected Accelerogram 0.21404	MMO-HGN Parameter Max. Aceleration (g)	Corrected Accelerogram 0.21404	IN0368ya Parameter Max. Aceleration (g)	Corrected Accelerogram 0.21404	VALORI MEDI Max. Aceleration (g)	0.214
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec)	Corrected Accelerogram 0.21404 23.76	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec)	Corrected Accelerogram 0.21404 22.245	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec)	Corrected Accelerogram 0.21404 13.14	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec)	0.214 12.505
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec)	Corrected Accelerogram 0.21404 23.76 15.0899	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec)	Corrected Accelerogram 0.21404 22.245 12.93979	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec)	Corrected Accelerogram 0.21404 13.14 29.68459	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec)	0.214 12.505 17.549
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec)	0.214 12.505 17.549 12.690
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm)	0.214 12.505 17.549 12.690 7.841
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec)	0.214 12.505 17.549 12.680 7.841 17.996
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (sec) Time of Max. Displacement (sec) Vmax / Amax: (sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Usplacement (sec) Max. Displacement (sec) Vmax / Amax: (sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec)	0.214 12.505 17.549 12.690 7.841 17.996 0.084
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.39255	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.042752	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.09255 0.71631	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.7186	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.462
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Cisplacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.02397	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.09255 0.71631 0.03597	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.7186 0.03723	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (Ic)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.462 0.028
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.02397 229.15549	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Usplacement (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.33652 2.09255 0.71631 0.03597 327.5036	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.7186 0.03723 841.9317	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.462 0.028 321.023
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.42752 0.02397 229.15549 474.21468	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (ch) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.09255 0.71631 0.03597 327.5036 759.868	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Cumulative Absolute Velocity (cm/sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.0932 3.03616 0.7186 0.03723 841.9317 691.0219	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Cumulative Absolute Velocity (cm/sec)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.462 0.028 321.023 481.791
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Velocity (sec) Max. Jisplacement (cm) Time of Max. Velocity (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.02397 229.15549 474.21468 0.19035	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (g) Velocity RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.09255 0.71631 0.3597 327.5036 759.868 0.19313	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (c) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.7186 0.03723 841.3317 691.0219 0.20694	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (cm/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (g*sec	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.462 0.028 321.023 481.791 0.194
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (om/sec) Acceleration Spectrum Intensity (om/sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.02397 229.15549 474.21468 0.19035 57.98895	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (g*sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.09255 0.71631 0.03597 327.5036 759.868 0.19313 46.66103	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (g*sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.7186 0.03723 841.9317 691.0219 0.20694 91.84131	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Usplacement (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (Ic) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.462 0.028 321.023 481.791 0.194 64.618
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity pectrum Intensity (cm) Housner Intensity (cm)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.02397 229.15549 474.21468 0.19035 57.98895 53.63471	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (cm) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.09255 0.71631 0.03597 327.5036 759.868 0.19313 46.66103 38.52431	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.7186 0.03723 841.9317 691.0219 0.20694 91.84131 84.38648	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Displacement (cm) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.462 0.028 321.023 481.791 0.194 64.618 57.631
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.02397 229.15549 474.21468 0.19035 57.98895 53.63471 0.18049	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (cm) Housner Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.09255 0.71631 0.03597 327.5036 759.868 0.19313 46.66103 38.52431 0.18829	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (g) Velocity RMS: (cm/sec) Characteristic Intensity (cm) Arias Intensity: (m/sec) Characteristic Intensity (cm) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.03723 841.9317 691.0219 0.20694 91.84131 84.38648 0.17787	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (cm/sec) Characteristic Intensity (cc) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.462 0.028 321.023 481.791 0.194 64.618 57.631 0.169
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (sec) Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (g) Velocity RMS: (cm/sec) Characteristic Intensity (lc) Specific Energy Density (cm/2sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Bustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.02397 229.15549 474.21468 0.19035 57.98895 53.63471 0.18049 11.73871	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (g) Velocity RMS: (cm/sec) Characteristic Intensity (lc) Specific Energy Density (cm/2/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.09255 0.71631 0.03597 327.5036 759.868 0.19313 46.66103 38.52431 0.18829 12.1647	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (g) Velocity RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (grsc) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.7186 0.03723 841.9317 691.0219 0.20694 91.84131 84.38648 0.17787 17.6769	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Displacement (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (Ic) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.028 321.023 481.791 0.462 0.028 321.023 481.791 0.194 64.618 57.631 0.169 12.140
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (cm) Acceleration Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.02397 229.15549 474.21468 0.19035 57.98895 53.63471 0.18049 11.73871 0.22603	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (sec) Max. Displacement (sec) Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (g) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (cm) Housner Intensity (cm) Housner Intensity (cm) Sustained Maximum Aceleration (g) Sustained Maximum Velocity (cm/sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.33652 2.39255 0.71631 0.03597 327.5036 759.868 0.19313 46.66103 38.52431 0.18829 12.1647 0.2348	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (sec) Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.7186 0.03723 841.9317 691.0219 0.20694 91.84131 84.38648 0.17787 17.6769 0.21452	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Usplacement (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (g) Velocity RMS: (cm/sec) Characteristic Intensity (Ic) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.462 0.028 321.023 481.791 0.169 12.140 0.213
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g) A95 parameter (g)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.02397 229.15549 474.21468 0.19035 57.98895 53.63471 0.18049 11.73871 0.22603 0.21026	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (sec) Max. Displacement (sec) Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g) Ap5 parameter (g)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.09255 0.71631 0.03597 327.5036 759.868 0.19313 46.66103 38.52431 0.18829 12.1647 0.20348 0.20917	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g) A95 parameter (g)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.7186 0.03723 841.9317 691.0219 0.20694 91.84131 84.38648 0.17787 17.6769 0.21452 0.21135	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Displacement (cm) Time of Max. Displacement (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g) A95 parameter (g)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.462 0.028 321.023 481.791 0.194 64.618 57.631 0.169 12.140 0.211
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Max. Displacement (sec) Max. Displacement (cm) Time of Max. Velocity (sec) Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (m) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/2sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g) A95 parameter (g) Predominant Period (sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.02397 229.15549 474.21468 0.19035 57.98895 53.63471 0.18049 11.73871 0.22603 0.21026 0.08	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Aceleration (g) As5 parameter (g) Predominant Period (sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.09255 0.71631 0.03597 327.5036 759.868 0.19313 46.66103 38.52431 0.18829 12.1647 0.20348 0.20917 0.3	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (g) Velocity RMS: (cm/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g) As5 parameter (g) Predominant Period (sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.03723 841.9317 691.0219 0.20694 91.84131 84.38648 0.17787 17.6769 0.21452 0.21135 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (cm/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (g'sec Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g) Ap5 parameter (g) Predominant Period (sec)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.462 0.028 321.023 481.791 0.194 64.618 57.631 0.169 12.140 0.213 0.211 0.220
007142ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (of) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g) Ap5 parameter (g) Predominant Period (sec) Man Period (sec)	Corrected Accelerogram 0.21404 23.76 15.0899 26.05 2.68752 26.51 0.07187 0.02071 1.88183 0.64573 0.42752 0.02397 229.15549 474.21468 0.19035 53.63471 0.18049 11.73871 0.22603 0.21026 0.08 0.08 0.3618	MMO-HGN Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (g) Arias Intensity: (m/sec) Characteristic Intensity (lc) Specific Energy Density (cm2/sec) Acceleration Spectrum Intensity (g*sec) Velocity Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g) AdS parameter (g) Predominant Period (sec) Mean Period (sec)	Corrected Accelerogram 0.21404 22.245 12.93979 21.7 10.38657 19.8 0.06163 0.02784 2.33652 2.09255 0.71631 0.03597 327.5036 759.868 0.19313 46.66103 38.52431 0.18829 12.1647 0.20348 0.20348 0.20348 0.20348	IN0368ya Parameter Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Velocity (sec) Max. Displacement (sec) Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (cn) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (cm) Housner Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g) A65 parameter (g) Predominant Period (sec) Mean Period (sec)	Corrected Accelerogram 0.21404 13.14 29.68459 12.75 14.51881 13.09 0.14137 0.02972 3.9932 3.03616 0.07186 0.03723 841.9317 691.0219 0.20694 91.84131 84.38648 0.17787 17.6769 0.21452 0.21452 0.21135 0.3 0.4679	VALORI MEDI Max. Aceleration (g) Time of Max. Aceleration (sec) Max. Velocity (cm/sec) Time of Max. Displacement (sec) Max. Displacement (cm) Time of Max. Displacement (sec) Vmax / Amax: (sec) Acceleration RMS: (g) Velocity RMS: (cm/sec) Displacement RMS: (cm) Arias Intensity: (m/sec) Characteristic Intensity (Ic) Specific Energy Density (cm2/sec) Cumulative Absolute Velocity (cm/sec) Acceleration Spectrum Intensity (g'sec Velocity Spectrum Intensity (cm) Sustained Maximum Acceleration (g) Sustained Maximum Velocity (cm/sec) Effective Design Acceleration (g) A95 parameter (g) Predominant Period (sec) Max Maximum Acceleration (g)	0.214 12.505 17.549 12.690 7.841 17.996 0.084 0.028 2.705 2.847 0.0462 0.028 321.023 481.791 0.462 0.028 321.023 481.791 0.169 12.140 0.213 0.211 0.220 0.236

PARAMETRI DI SCUOTIMENTO - ACCELEROGRAMMI DI OUTPUT

000055xa		001243xa		003208xa		004675xa	
Parameter	Corrected Accelerogram	Parameter	Corrected Accelerogram	Parameter	Corrected Accelerogram	Parameter	Correcte
Max. Aceleration (g)	0.408	Max. Aceleration (g)	0.43774	Max. Aceleration (g)	0.42325	Max. Aceleration (g)	0.41998
Time of Max. Aceleration (sec)	4.2	Time of Max. Aceleration (sec)	3.79	Time of Max. Aceleration (sec)	5.01	Time of Max. Aceleration (sec)	16.57
Max. Velocity (cm/sec)	2.02E+01	Max. Velocity (cm/sec)	23.56998	Max. Velocity (cm/sec)	15.00814	Max. Velocity (cm/sec)	35.0486
Time of Max. Velocity (sec)	4.26	Time of Max. Velocity (sec)	4.08	Time of Max. Velocity (sec)	5.16	Time of Max. Velocity (sec)	16.51
Max. Displacement (cm)	2.48985	Max. Displacement (cm)	4.51526	Max. Displacement (cm)	3.33214	Max. Displacement (cm)	6.37384
Time of Max. Displacement (sec)	4.18	Time of Max. Displacement (sec)	3.8	Time of Max. Displacement (sec)	1.09	Time of Max. Displacement (sec)	14.43
Vmax / Amax: (sec)	0.05039	Vmax / Amax: (sec)	0.05489	Vmax / Amax: (sec)	0.03615	Vmax / Amax: (sec)	0.08507
Acceleration RMS: (g)	0.04099	Acceleration RMS: (g)	0.06041	Acceleration RMS: (g)	0.08375	Acceleration RMS: (g)	0.03937
Velocity RMS: (cm/sec)	2.52204	Velocity RMS: (cm/sec)	4.42228	Velocity RMS: (cm/sec)	4.07602	Velocity RMS: (cm/sec)	2.92189
Displacement RMS: (cm)	0.65014	Displacement RMS: (cm)	1.00973	Displacement RMS: (cm)	1.15361	Displacement RMS: (cm)	0.95373
Arias Intensity: (m/sec)	0.946	Arias Intensity: (m/sec)	1.07574	Arias Intensity: (m/sec)	1.29364	Arias Intensity: (m/sec)	1.60035
Characteristic Intensity (Ic)	0.05016	Characteristic Intensity (Ic)	0.06494	Characteristic Intensity (Ic)	0.08385	Characteristic Intensity (Ic)	0.06395
Specific Energy Density (cm2/sec)	232.41919	Specific Energy Density (cm2/sec)	374.1168	Specific Energy Density (cm2/sec)	198.8692	Specific Energy Density (cm2/sec)	571.921
Cumulative Absolute Velocity (cm/sec)	635.64494	Cumulative Absolute Velocity (cm/sec)	573.3879	Cumulative Absolute Velocity (cm/sec)	633.6959	Cumulative Absolute Velocity (cm/sec)	779.171
Acceleration Spectrum Intensity (g*sec)	0.34226	Acceleration Spectrum Intensity (g*sec)	0.38856	Acceleration Spectrum Intensity (g*sec)	0.32936	Acceleration Spectrum Intensity (g*sec)	0.41651
Velocity Spectrum Intensity (cm)	83.13451	Velocity Spectrum Intensity (cm)	101.8586	Velocity Spectrum Intensity (cm)	70.03863	Velocity Spectrum Intensity (cm)	109.342
Housner Intensity (cm)	60.44048	Housner Intensity (cm)	85.28022	Housner Intensity (cm)	54.02311	Housner Intensity (cm)	95.2122
Sustained Maximum Acceleration (g)	0.23918	Sustained Maximum Acceleration (g)	0.22809	Sustained Maximum Acceleration (g)	0.31488	Sustained Maximum Acceleration (g)	0.37848
Sustained Maximum Velocity (cm/sec)	16.1689	Sustained Maximum Velocity (cm/sec)	20.07787	Sustained Maximum Velocity (cm/sec)	12.38425	Sustained Maximum Velocity (cm/sec)	16.3405
Effective Design Acceleration (g)	0.41252	Effective Design Acceleration (g)	0.43749	Effective Design Acceleration (g)	0.41879	Effective Design Acceleration (g)	0.42607
A95 parameter (g)	0.40493	A95 parameter (g)	0.43444	A95 parameter (g)	0.41793	A95 parameter (g)	0.41682
Predominant Period (sec)	0.26	Predominant Period (sec)	0.24	Predominant Period (sec)	0.12	Predominant Period (sec)	0.24
Mean Period (sec)	0.33436	Mean Period (sec)	0.36553	Mean Period (sec)	0.21841	Mean Period (sec)	0.31082
Significant Duration:	4.12	Significant Duration:	4.08	Significant Duration:	5.76	Significant Duration:	3.62
007142ya		IN0368ya		MMO-HGN		VALORI MEDI	
Parameter	Corrected Accelerogram	Parameter	Corrected Accelerogram	Parameter	Corrected Accelerogram		
Max. Aceleration (g)	0.42699	Max. Aceleration (g)	0.38603	Max. Aceleration (g)	0.39516	Max. Aceleration (g)	0.41
Time of Max. Aceleration (sec)	26.38	Time of Max. Aceleration (sec)	13.75	Time of Max. Aceleration (sec)	23.07	Time of Max. Aceleration (sec)	13.25
Max. Velocity (cm/sec)	21.9284	Max. Velocity (cm/sec)	34.28524	Max. Velocity (cm/sec)	19.88495	Max. Velocity (cm/sec)	24.27
Time of Max. Velocity (sec)	23.6	Time of Max. Velocity (sec)	12.91	Time of Max. Velocity (sec)	21.875	Time of Max. Velocity (sec)	12.62
Max. Displacement (cm)	2.91546	Max. Displacement (cm)	15.19061	Max. Displacement (cm)	10.56623	Max. Displacement (cm)	6.48
Time of Max. Displacement (sec)	26.68	Time of Max. Displacement (sec)	13.16	Time of Max. Displacement (sec)	19.79	Time of Max. Displacement (sec)	11.8
Vmax / Amax: (sec)	0.05235	Vmax / Amax: (sec)	0.09054	Vmax / Amax: (sec)	0.0513	Vmax / Amax: (sec)	0.06
Acceleration RMS: (g)	0.03814	Acceleration RMS: (g)	0.05386	Acceleration RMS: (a)	0.05016	Acceleration RMS: (g)	0.0

4.58614

3.06165

2.36085

0.09084

1110.736

1253.883

0.37379

123.0028

103.2326

0.34807

20.70292

0.37766

0.37724

0.32457

0.14

9.27

Velocity RMS: (cm/sec)

Arias Intensity: (m/sec)

Housner Intensity (cm)

A95 parameter (g)

Mean Period (sec)

Significant Duration:

Predominant Period (sec)

Displacement RMS: (cm)

Characteristic Intensity (Ic)

Specific Energy Density (cm2/sec)

Velocity Spectrum Intensity (cm)

Effective Design Acceleration (g)

Cumulative Absolute Velocity (cm/sec)

Sustained Maximum Acceleration (g)

Sustained Maximum Velocity (cm/sec)

Acceleration Spectrum Intensity (g*sec)

2.94263

2.10467

2.32554

519.4594

1356.521

70.26668

52.73556

14.81378

0.36936

0.38617

12.185

0.14 0.24569

0.35672

0.087

0.3615

Velocity RMS: (cm/sec)

Arias Intensity: (m/sec)

Housner Intensity (cm)

A95 parameter (g)

Mean Period (sec)

Significant Duration:

Predominant Period (sec)

Displacement RMS: (cm)

Characteristic Intensity (Ic)

Specific Energy Density (cm2/sec)

Velocity Spectrum Intensity (cm)

Effective Design Acceleration (g)

Cumulative Absolute Velocity (cm/sec)

Sustained Maximum Acceleration (g)

Sustained Maximum Velocity (cm/sec)

Acceleration Spectrum Intensity (g*sec)

2.38947

0.67139

1.45067

0.05992

0.35319

80.43872

68.13972

0.36024

17.07927

0.42953

0.42162

0.28517

0.22

5.64

369.5236

836.06584

Velocity RMS: (cm/sec)

Arias Intensity: (m/sec)

Housner Intensity (cm)

A95 parameter (g)

Mean Period (sec)

Significant Duration:

Predominant Period (sec)

Displacement RMS: (cm)

Characteristic Intensity (Ic)

Specific Energy Density (cm2/sec)

Velocity Spectrum Intensity (cm)

Effective Design Acceleration (g)

Cumulative Absolute Velocity (cm/sec)

Acceleration Spectrum Intensity (g*sec)

Sustained Maximum Acceleration (g)

Sustained Maximum Velocity (cm/sec)

VALORI MEDI	
Max. Aceleration (g)	0.414
Time of Max. Aceleration (sec)	13.253
Max. Velocity (cm/sec)	24.271
Time of Max. Velocity (sec)	12.628
Max. Displacement (cm)	6.483
Time of Max. Displacement (sec)	11.876
Vmax / Amax: (sec)	0.060
Acceleration RMS: (g)	0.052
Velocity RMS: (cm/sec)	3.409
Displacement RMS: (cm)	1.372
Arias Intensity: (m/sec)	1.579
Characteristic Intensity (Ic)	0.072
Specific Energy Density (cm2/sec)	482.435
Cumulative Absolute Velocity (cm/sec)	866.910
Acceleration Spectrum Intensity (g*sec	0.366
Velocity Spectrum Intensity (cm)	91.155
Housner Intensity (cm)	74.152
Sustained Maximum Acceleration (g)	0.318
Sustained Maximum Velocity (cm/sec)	16.795
Effective Design Acceleration (g)	0.410
A95 parameter (g)	0.408
Predominant Period (sec)	0.194
Mean Period (sec)	0.298
Significant Duration (sec):	6.382

Corrected Accelerogra 0.41998 16.57 35.04863 16.51 6.37384

571.9214

779.1717

109.3427 95.2122 0.37848

16.34051

DATI SPETTRO MEDIO MZS - DGR 2195

Period (s)	Acc (g)	Vel (cm/sec)	Disp (cm)	Pseudo-Acc (g)	Pseudo-Vel (cm/sec)
0 0.02	0.327 0.331	0.000 0.128	0.000 0.003	0.327 0.331	0.000 1.035
0.04	0.370	0.784	0.015	0.369	2.307
0.06	0.404 0.575	2.412 5.094	0.036	0.403 0.574	3.778 7.165
0.1	0.647	8.046	0.160	0.645	10.066
0.12	1.027	21.177	0.277	1.023	22.351
0.16	0.932	22.010	0.590	0.927	23.170
0.18	1.008	30.989	0.997	1.003	31.323
0.22	0.962	31.259 40.321	1.152	0.958	32.899 38.268
0.26	0.916	37.191	1.530	0.911	36.977
0.28	0.878	38.775 35.893	1.702	0.874 0.718	38.199 33.625
0.32	0.641	35.640	1.621	0.637	31.824
0.36	0.577	34.322	1.846	0.573	32.226
0.38 0.4	0.608	36.864 36.945	2.171 2.227	0.605	35.890 34.974
0.42	0.532	35.703	2.319	0.529	34.696
0.44	0.502	36.416 34.946	2.402	0.499	34.307 32.151
0.48	0.401	32.908	2.284	0.399	29.897
0.52	0.349	30.079	2.332	0.347	28.173
0.54 0.56	0.320	30.817 30.841	2.308 2.349	0.319 0.301	26.858 26.361
0.58	0.307	32.710	2.554	0.306	27.671
0.62	0.312	33.693 34.143	2.775 3.002	0.310	29.060 30.426
0.64	0.316	34.308	3.191	0.313	31.325
0.68	0.303	35.365	3.453	0.301	31.908
0.7 0.72	0.292 0.277	34.849 34.044	3.534 3.543	0.290 0.275	31.722 30.914
0.74	0.255	33.106	3.448	0.253	29.275
0.76	0.242	32.441 31.398	3.451 3.479	0.240	28.528 28.022
0.8	0.220	30.658	3.465	0.218	27.218
0.82	0.192	29.798	3.341	0.203	24.992
0.86 0.88	0.177 0.162	28.893 28.788	3.220 3.086	0.175	23.523 22.033
0.9	0.155	28.518	3.086	0.153	21.545
0.92 0.94	0.149 0.140	28.408 28.313	3.107 3.056	0.148 0.139	21.221 20.424
0.96	0.131	28.187	2.973	0.130	19.461
0.58	0.122	27.629	2.803	0.121	17.659
1.02 1.04	0.111	27.201 26.728	2.837 2.959	0.110	17.477 17 879
1.06	0.110	26.264	3.049	0.109	18.076
1.08	0.108	26.100 26.711	3.099	0.107	18.032
1.12	0.106	26.785	3.273	0.105	18.363
1.14	0.102	26.212	3.373	0.104	18.268
1.18 1.2	0.097 0.092	26.179 25.769	3.331 3.260	0.096 0.091	17.737 17.067
1.22	0.087	25.038	3.188	0.086	16.418
1.24	0.082	23.334	3.105	0.081	15.064
1.28	0.073	22.384 21.486	2.937 2.854	0.072	14.418 13.794
1.32	0.068	20.861	2.909	0.067	13.846
1.34	0.067	20.838 20.758	2.974 3.030	0.067	13.947 13.997
1.38	0.066	20.624	3.083	0.065	14.036
1.42	0.064	20.166	3.186	0.064	14.096
1.44 1.46	0.063 0.061	20.130 20.202	3.204 3.171	0.062	13.980 13.646
1.48	0.058	20.095	3.101	0.057	13.167
1.52	0.057	19.980	3.119	0.056	12.856
1.54 1.56	0.054	19.941 19.888	3.095	0.053	12.629 12.275
1.58	0.049	19.806	2.974	0.048	11.829
1.6 1.62	0.046 0.044	19.699 19.574	2.885 2.786	0.045 0.043	11.328 10.807
1.64	0.041	19.435	2.688	0.040	10.299
1.68	0.033	19.143	2.595	0.036	9.393
1.7 1.72	0.035	18.995 18.850	2.439 2.377	0.034	9.014 8.685
1.74	0.032	18.710	2.327	0.031	8.402
1.76 1.78	0.031 0.030	18.576 18.449	2.310 2.334	0.030 0.030	8.246 8.237
1.8	0.030	18.328	2.347	0.029	8.192
1.84	0.030	18.104	2.402	0.029	8.371
1.86 1 88	0.030 0.029	18.000 17 900	2.492 2.523	0.029	8.418 8.432
1.9	0.029	17.803	2.544	0.028	8.414
1.92 1.94	0.029 0.028	17.709 17.616	2.556 2.559	0.028 0.027	8.364 8.287
1.96	0.027	17.524	2.553	0.027	8.185
2	0.026	17.344	2.523	0.025	7.925
2.02	0.025	17.255	2.500	0.025	7.777

2.04	0.025	17 167	0.474	0.024	7 6 1 0
2.04	0.025	17.10/	2.4/4	0.024	7.019
2.00	0.024	16.006	2.443	0.023	7.400
2.00	0.023	16 912	2.409	0.022	7.087
2.1	0.022	16 921	2.309	0.022	6.992
2.12	0.022	16 753	2.322	0.021	6 822
2.14	0.021	16 678	2 328	0.020	6 772
2.18	0.020	16 606	2 324	0.020	6 698
22	0.020	16 539	2 309	0.019	6 594
2.2	0.020	16.475	2.000	0.019	6 457
2.22	0.019	16.416	2.201	0.019	6 275
2.24	0.019	16 261	2.275	0.010	6 401
2.20	0.019	16 21 2	2.302	0.018	6 4 1 4
2.20	0.019	10.012	2.320	0.010	0.414
2.3	0.019	10.207	2.348	0.018	0.415
2.32	0.010	10.227	2.303	0.017	0.401
2.34	0.018	16.192	2.373	0.017	6.372
2.36	0.018	16.162	2.377	0.017	6.328
2.38	0.018	16.137	2.376	0.017	6.272
2.4	0.017	16.116	2.370	0.017	6.204
2.42	0.017	16.100	2.360	0.016	6.127
2.44	0.017	16.089	2.347	0.016	6.043
2.46	0.016	16.081	2.331	0.016	5.955
2.48	0.016	16.077	2.315	0.015	5.864
2.5	0.016	16.077	2.298	0.015	5.774
2.52	0.015	16.079	2.281	0.014	5.687
2.54	0.015	16.085	2.266	0.014	5.604
2.56	0.015	16.093	2.252	0.014	5.528
2.58	0.014	16.104	2.241	0.014	5.458
2.6	0.014	16.116	2.233	0.013	5.397
2.62	0.014	16.131	2.229	0.013	5.345
2.64	0.014	16.146	2.228	0.013	5.302
2.66	0.013	16.163	2.230	0.013	5.267
2.68	0.013	16.181	2.235	0.013	5.241
2.7	0.013	16.200	2.244	0.012	5.221
2.72	0.013	16.220	2.254	0.012	5.208
2.74	0.013	16.239	2.267	0.012	5.200
2.76	0.013	16.260	2.282	0.012	5.196
2.78	0.013	16.280	2.298	0.012	5.194
2.8	0.013	16.299	2.315	0.012	5.195
2.82	0.013	16 319	2.332	0.012	5 195
2 84	0.012	16.338	2 348	0.012	5 196
2.86	0.012	16 357	2 364	0.012	5 194
2.88	0.012	16 375	2 379	0.012	5 190
2.00	0.012	16 392	2 392	0.011	5 183
2.0	0.012	16.408	2.002	0.011	5 172
2.02	0.012	16 424	2.404	0.011	5 1 5 7
2.04	0.012	16 420	2.420	0.011	5 1 2 9
2.90	0.012	16.459	2.420	0.011	5.130
2.90	0.012	10.400	2.423	0.011	5.114
3	0.012	10.400	2.428	0.011	5.085
3.02	0.011	10.478	2.428	0.011	5.051
3.04	0.011	16.489	2.425	0.011	5.012
3.06	0.011	16.499	2.420	0.010	4.969
3.08	0.011	16.509	2.412	0.010	4.921
3.1	0.011	16.517	2.402	0.010	4.869
3.12	0.011	16.524	2.390	0.010	4.813
3.14	0.010	16.531	2.384	0.010	4.771
3.16	0.010	16.536	2.416	0.010	4.805
3.18	0.010	16.541	2.443	0.010	4.827
3.2	0.010	16.545	2.464	0.010	4.837
3.22	0.010	16.548	2.478	0.010	4.836
3.24	0.010	16.550	2.487	0.010	4.823
3.26	0.010	16.551	2.490	0.009	4.800
3.28	0.010	16.552	2.488	0.009	4.766
3.3	0.010	16.552	2.480	0.009	4.722
3.32	0.010	16.551	2.468	0.009	4.670
3.34	0.010	16.550	2.450	0.009	4.610
3.36	0.009	16.548	2.429	0.009	4.542
3.38	0.009	16.545	2.404	0.008	4.469
3.4	0.009	16.542	2.375	0.008	4.390
3.42	0.009	16.538	2.344	0.008	4.306
3.44	0.009	16.534	2.309	0.008	4.218
3.46	0.008	16.530	2.273	0.008	4.128
3.48	0.008	16.525	2.235	0.007	4.035
3.5	0.008	16.519	2.195	0.007	3.940
3.52	0.008	16.514	2.154	0.007	3.844
3.54	0.007	16.508	2.112	0.007	3.748
3.56	0.007	16.502	2.107	0.007	3.718
3.58	0.007	16.495	2.112	0.007	3.707
3.6	0.007	16.488	2.117	0.007	3.695
3.62	0.007	16.481	2.122	0.007	3.682
3.64	0.007	16.474	2.125	0.006	3.668
3.66	0.007	16.467	2.128	0.006	3.654
3.68	0.007	16.459	2.131	0.006	3.638
3.7	0.007	16.452	2.133	0.006	3.622
3.72	0.007	16.444	2.134	0.006	3.605
3.74	0.007	16.436	2.136	0.006	3.588
3.76	0.007	16.428	2.136	0.006	3.570
3.78	0.007	16.420	2.137	0.006	3.552
3.8	0.007	16.412	2.137	0.006	3.533
3.82	0.007	16 404	2 136	0.006	3 514
3.84	0.006	16 396	2 136	0.006	3 4 9 5
3.86	0.006	16 388	2 135	0.006	3 475
3.88	0.006	16.380	2 134	0.006	3 156
3.9	0.006	16.371	2 133	0.006	3 126
3.02	0.000	16 363	2.100	0.006	3 110
3.52	0.000	16 355	2.131	0.006	3 200
3.04	0.000	16.333	2.123	0.005	0.000
3.90	0.000	10.347	2.12/	0.005	3.3/0
0.00	0.000	10.000	2.120	0.005	3.335
4	0.000	10.331	2.120	0.000	3.335

DATI SPETTRO MEDIO SLV - DM2018

Period (s)	Acc (g)	Vel (cm/sec)	Disp (cm)	Pseudo-Acc (g)	Pseudo-Vel (cm/sec)
0	0.414	0.000	0.000	0.414	0.000
0.04	0.460	1.114	0.018	0.460	2.873
0.06	0.575	3.129 7.177	0.051	0.574	5.374 9.481
0.1	0.931	11.872	0.231	0.928	14.484
0.12	1.135	21.960	0.376	1.130	24.707
0.16	1.200	26.719	0.760	1.195	29.843
0.18	1.239	30.030	1.226	1.171	32.906
0.22	1.288	41.961	1.542	1.282	44.026
0.24	1.193	49.980	1.994	1.187	47.042 48.196
0.28	1.041	45.726	2.016	1.035	45.245
0.32	0.905	47.906	2.291	0.900	44.976
0.34	0.825	46.343 43.529	2.355 2.334	0.820	43.528 40.735
0.38	0.689	43.545	2.458	0.685	40.647
0.4 0.42	0.674 0.630	42.418 43.110	2.663 2.746	0.670	41.834 41.073
0.44	0.577	43.735	2.761	0.574	39.420
0.46 0.48	0.531	44.087 43.729	2.777 2.921	0.528	37.926 38.235
0.5	0.482	43.522	2.977	0.479	37.413
0.52	0.491	45.258	3.591	0.496	41.780
0.56	0.501	47.130	3.879	0.498	43.528
0.6	0.460	46.350	4.090	0.457	42.826
0.62	0.418	44.515 41.637	3.962 3.770	0.415	40.155
0.66	0.339	39.385	3.651	0.337	34.759
0.68 0.7	0.325 0.324	38.775 39.056	3.704 3.915	0.322	34.229 35.145
0.72	0.321	40.784	4.105	0.319	35.822
0.74 0.76	0.320	42.988 44.634	4.315	0.317	36.641 36.941
0.78	0.310	45.097	4.656	0.308	37.503
0.82	0.301	45.057 44.501	4.757	0.299	37.362 37.246
0.84	0.285	43.542	4.950	0.282	37.024
0.88	0.255	41.211	4.871	0.253	34.777
0.9	0.242	40.968 40.285	4.831 4.806	0.240	33.729 32.821
0.94	0.222	39.448	4.829	0.220	32.276
0.96 0.98	0.217 0.214	38.469 37.755	4.929 5.060	0.215 0.212	32.263 32.439
1	0.208	37.414	5.128	0.206	32.223
1.02	0.201	36.819 36.427	5.144 5.149	0.199	31.687 31.107
1.06	0.187	36.476	5.180	0.186	30.704
1.08	0.184	36.438	5.283	0.182	30.734
1.12	0.179	36.542	5.543	0.178	31.094
1.16	0.174	37.543	5.767	0.172	31.240
1.18 1.2	0.169	37.992 38.491	5.812 5.859	0.168	30.945 30.678
1.22	0.162	38.880	5.932	0.160	30.551
1.24 1.26	0.158 0.154	39.027 39.221	5.990 6.002	0.157 0.152	30.350 29.930
1.28	0.148	39.143	5.976	0.147	29.333
1.32	0.142	38.281	5.895	0.141	28.021
1.34	0.133	37.701	5.880	0.132	27.572
1.38	0.128	36.326	5.998	0.123	27.310
1.4 1.42	0.126	35.704 35.015	6.041 6.094	0.124	27.110
1.44	0.120	34.272	6.118	0.119	26.695
1.46 1.48	0.117 0.114	33.425 32.524	6.110 6.136	0.115 0.113	26.293 26.051
1.5	0.112	31.756	6.173	0.110	25.859
1.52	0.109	31.290	6.217	0.108	25.364
1.56	0.105	31.261	6.241	0.103	25.138
1.6	0.103	31.218	6.369	0.102	25.010
1.62 1.64	0.100	31.171 31.148	6.432 6.477	0.099	24.947 24.816
1.66	0.096	31.374	6.519	0.095	24.676
1.68 1.7	0.095 0.094	31.991 32.517	6.557 6.648	0.093	24.522 24.571
1.72	0.093	32.995	6.737	0.092	24.610
1./4 1.76	0.092	33.468 33.897	6.816 6.891	0.091	24.614 24.600
1.78	0.089	34.274	6.964	0.088	24.583
1.82	0.089	34.868	7.179	0.087	24.785
1.84 1.86	0.088 0.088	35.146 35.483	7.306 7.438	0.087	24.949 25.124
1.88	0.087	35.869	7.553	0.086	25.244
1.9 1.92	0.086 0.086	36.286 36.628	7.655 7.765	0.085 0.085	25.314 25.410
1.94	0.086	36.895	7.942	0.085	25.721
1.96 1.98	0.086	37.085 37.285	8.129 8.307	0.085	26.059 26.361
2 2.02	0.087 0.086	37.575 37.804	8.483 8.636	0.085 0.085	26.649 26.862

2.04	0.096	27.076	9 765	0.095	26.005
2.04	0.086	37.976	8.765	0.085	26.995
2.06	0.085	38.091	8.870	0.084	27.055
2.08	0.085	38.151	8.952	0.083	27.041
2.1	0.084	38.160	9.021	0.082	26.992
2.12	0.083	38.122	9.086	0.081	26.930
2.14	0.081	38.115	9.125	0.080	26.790
2.16	0.080	38.180	9.139	0.079	26.586
2.18	0.078	38.205	9.147	0.077	26.362
22	0.077	38 101	9 1/6	0.076	26 122
2.2	0.077	38.191	0.100	0.070	20.122
2.22	0.076	38.143	9.190	0.075	26.009
2.24	0.075	38.060	9.232	0.074	25.895
2.26	0.074	37.946	9.258	0.073	25.740
2.28	0.073	37.974	9.269	0.072	25.544
2.3	0.072	38.004	9.316	0.071	25.448
2.32	0.071	37.999	9.394	0.070	25.442
2 34	0.071	37 960	9 535	0.070	25 602
2.04	0.071	27 900	0.000	0.070	25.002
2.30	0.071	07.000	0.041	0.070	25.757
2.38	0.071	37.789	9.841	0.070	25.980
2.4	0.071	37.657	10.000	0.070	26.179
2.42	0.071	37.498	10.141	0.070	26.330
2.44	0.070	37.313	10.266	0.069	26.437
2.46	0.070	37.141	10.388	0.069	26.532
2 48	0.069	36 947	10 494	0.069	26 588
25	0.069	36 744	10 589	0.068	26.612
2.5	0.009	36.520	10.505	0.000	20.012
2.52	0.009	30.339	10.009	0.008	20.003
2.54	0.068	36.316	10.767	0.067	26.635
2.56	0.068	36.090	10.868	0.067	26.673
2.58	0.067	35.849	10.957	0.066	26.684
2.6	0.067	35.705	11.034	0.066	26.664
2.62	0.066	35.608	11.098	0.065	26.615
2 64	0.065	35 561	11 149	0.064	26 534
2.66	0.065	25.546	11 192	0.064	26 / 16
2.00	0.005	05.540	11.105	0.004	20.410
2.68	0.064	35.512	11.204	0.063	26.268
2.7	0.063	35.460	11.265	0.062	26.215
2.72	0.063	35.478	11.324	0.062	26.158
2.74	0.062	35.639	11.381	0.061	26.097
2.76	0.061	35.773	11.431	0.060	26.023
2 78	0.061	35 925	11 482	0.060	25 951
28	0.060	36.029	11 522	0.059	25 856
2.0	0.000	00.023	11.522	0.050	DE 701
2.82	0.059	36.087	11.549	0.058	25./31
2.84	0.059	36.159	11.561	0.058	25.578
2.86	0.058	36.221	11.561	0.057	25.398
2.88	0.057	36.236	11.548	0.056	25.194
2.9	0.056	36.205	11.526	0.055	24.972
2.92	0.055	36.129	11.491	0.054	24.727
2.94	0.054	36.031	11 453	0.053	24 477
2.04	0.054	00.001	11.400	0.050	04.005
2.96	0.053	36.044	11.403	0.052	24.205
2.98	0.052	36.018	11.341	0.051	23.911
3	0.051	35.956	11.268	0.050	23.600
3.02	0.050	35.858	11.199	0.049	23.299
3.04	0.049	35.728	11.120	0.048	22.984
3.06	0.048	35.567	11.037	0.047	22.662
3.08	0.047	35 377	10 969	0.047	22 378
0.00	0.046	35.353	10.009	0.047	22.070
0.10	0.040	05.000	10.900	0.040	22.109
3.12	0.046	35.357	10.887	0.045	21.924
3.14	0.045	35.366	10.898	0.044	21.808
3.16	0.045	35.387	10.908	0.044	21.688
3.18	0.044	35.402	10.910	0.043	21.556
3.2	0.044	35.411	10.908	0.043	21.418
3.22	0.043	35.414	10.910	0.042	21.289
3.24	0.043	35 413	10 919	0.042	21 175
3.26	0.042	25.406	10 022	0.041	21.052
5.20	0.042	05.400	10.923	0.041	21.032
3.28	0.042	35.418	10.937	0.041	20.951
3.3	0.041	35.425	10.948	0.040	20.844
3.32	0.041	35.426	10.948	0.040	20.720
3.34	0.040	35.422	10.942	0.039	20.583
3.36	0.040	35.419	10.929	0.039	20.436
3.38	0.039	35.480	10.906	0.038	20.273
3.4	0.039	35.535	10.871	0.038	20.090
3 42	0.038	35 582	10 827	0.037	19 800
3 44	0.038	35 622	10 771	0.037	10 672
2.46	0.027	25 655	10 705	0.026	10.073
0.40	0.037	33.000	10.700	0.030	10.440
3.48	0.036	33.680	10.529	0.035	19.191
3.5	0.036	35.697	10.560	0.035	18.958
3.52	0.035	35.706	10.486	0.034	18.717
3.54	0.034	35.707	10.402	0.033	18.463
3.56	0.034	35.700	10.358	0.033	18.281
3.58	0.033	35.725	10.345	0.032	18.157
3.6	0.033	35 740	10.328	0.032	18 026
3.62	0.000	35 745	10.302	0.032	17 200
0.02	0.032	05.740	10.302	0.032	17.002
3.04	0.032	35./40	10.2/5	0.031	17.736
3.66	0.032	35./25	10.279	0.031	17.646
3.68	0.032	35.699	10.334	0.031	17.644
3.7	0.031	35.664	10.385	0.031	17.636
3.72	0.031	35.619	10.425	0.030	17.609
3.74	0.031	35.565	10.456	0.030	17,565
3 76	0.031	35 501	10 477	0.030	17 509
3.78	0.030	35 / 28	10.490	0.030	17 /00
0.70	0.030	00.420	10.430	0.030	17.057
0.0	0.000	05.040	10.490	0.023	17.35/
3.82	0.030	33.254	10.502	0.029	17.275
3.84	0.030	35.153	10.499	0.029	17.178
3.86	0.029	35.045	10.494	0.028	17.082
3.88	0.029	34.928	10.489	0.028	16.986
3.9	0.029	34.804	10.476	0.028	16.878
3.92	0.028	34.672	10.458	0.027	16.763
3.94	0.028	34.533	10.436	0.027	16 643
3.96	0.028	3/ 388	10 444	0.027	16 570
0.00	0.020	04.000	10.444	0.027	16 400
3.90	0.027	34.23/	10.440	0.027	10.490
4	0.027	34.081	10.438	0.026	16.396